Assiut University Journal of Multidisciplinary Scientific Research (AUNJMSR) Faculty of Science, Assiut University, Assiut, Egypt. Printed ISSN 2812-5029 Online ISSN 2812-5037 Vol. 53(2): 255- 266 (2024) https://aunj.journals.ekb.eg

Semi-Baer and Semi-Quasi Baer Properties of Skew Generalized Power Series Rings

R. E. Abdel-Khalek¹, M. M. Hamam^{2,*} and R. M. Salem¹

¹ Mathematics Department, Faculty of Science, Al-Azhar Univ., Nasr City 11884, Cairo, Egypt.

² Mathematics Department, Faculty of Science, Assiut Univ., Assiut 71515, Egypt.

*Corresponding Author: mostafahamam154@gmail.com

ARTICLE INFO

Article History: Received: 2023-12-24 Accepted: 2024-02-04 Online: 2024-04-29

Keywords:

Baer rings, quasi-Baer rings, semi-Baer rings, semi-quasi Baer rings, generalized power series ring, skew generalized power series ring.

ABSTRACT

Let *R* be a ring with identity, (S, \leq) an ordered monoid, $\omega: S \to End(R)$ a monoid homomorphism, and $A = R[[S, \omega]]$ the ring of skew generalized power series. The concepts of semi-Baer and semi-quasi Baer rings were introduced by Waphare and Khairnar as extensions of Baer and quasi-Baer rings, respectively. A ring *R* is called a semi-Baer (semi-quasi Baer) ring if the right annihilator of every subset (right ideal) of *R* is generated by a multiplicatively finite element in *R*. In this paper, we examine the behavior of a skew generalized power series ring over a semi-Baer (semi-quasi Baer) ring and prove that, under specific conditions, the ring *A* is semi-Baer (semiquasi Baer) if and only if *R* is semi-Baer (semi-quasi Baer). Also, we prove that if *f* is a multiplicative finite element of *A*, then *f* (1) is a multiplicative finite element of *R* and determine the conditions under which $f = c_{f(1)}$.

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity, and $r_R(S) = \{a \in R \mid sa = 0, \text{ for all } s \in S\}$ is the right annihilator of a nonempty subset S in R. The notion of Baer rings was introduced by Kaplansky in 1955 [8]. Five years later, Maeda [12] defined Rickart rings and Hattori [6] introduced the notion of a right PP rings and it was later shown that the two concepts are equivalent. According to Chase [4] the PP ring notion is not left-right symmetric. Later in 1967 Clark introduced the concept of quasi-Baer rings [5]. By virtue of [8, Theorem 3] and [5, Lemma 1], the definitions of Baer and quasi-Baer rings are left-right symmetric. Hence, Brikenmeier introduced the concept of right principally quasi-Baer (right p.q. Baer) rings as a generalization of quasi-Baer rings (see [3]). The notion of a right p.q. Baer ring is not left–right symmetric, but if R is a semiprime ring, R is right p.q. Baer if and only if R is left p.q. Baer [3, Corollary 1.11].

In 2004, Lee and Zhou [10] introduced the concepts of Baer modules, PP modules, quasi-Baer modules, and p.q. Baer modules as extensions of Baer rings, PP rings, quasi-Baer rings, and p.q. Baer rings, respectively. As a generalization of Lee and Zhou's concepts, Waphare and Khairnar [26] introduced the notions of semi-Baer modules, semi-PP modules, semi-quasi-Baer modules, and semi-p.q. Baer modules.

In 1974, Armendariz seems to be the first to consider how a polynomial ring behaves over a Baer ring by proving that: If *R* is a reduced ring, then R[x] is a Baer ring if and only if *R* is a Baer ring [2, Theorem B]. In 2005, Salem investigated how the generalized power series ring behaves over a Baer ring and showed that, under certain conditions the ring of generalized power series A = R[[S]] is Baer if and only if *R* is Baer [25, Theorem 3.5]. Paykan and Moussavi extended these results by studying the relation between the Baer (quasi-Baer) properties of a ring *R*, and its skew generalized power series extension $R[[S, \omega]]$ [18, Theorem 2.11 and Theorem 2.17].

Inspired by those previous works, we examine the behavior of a skew generalized power series ring over a semi-Baer (semi-quasi Baer) ring and investigate the conditions under which a ring of skew generalized power series $R[[S, \omega]]$ is semi-Baer (semi-quasi Baer) whenever *R* is semi-Baer (semi-quasi Baer) and vice versa. Also, in the context of multiplicatively finite elements we generalize [17, Proposition 3.2].

2. Preliminaries

In this section, we present some definitions and results that will be helpful in the sequel.

Definition 2.1 ([8]). A ring R is called Baer if the right annihilator of every nonempty subset of R is generated by an idempotent.

Definition 2.2 ([5]). A ring R is called quasi-Baer if the right annihilator of every right ideal of R is generated by an idempotent.

In [26], Waphare and Khairnar introduced the concepts of a multiplicative order of an element and a multiplicatively finite element in rings as follows:

Definition 2.3. Let *R* be a ring with identity, $a \in R$ a nonzero element, and $S = \{a^t \mid 0 \le t < \infty\}$. If *S* is finite, then the smallest positive integer *k* such that $a^k = a^m$ for some $0 \le m < k$ is called a multiplicative order of the element *a*. If *S* is infinite, then the multiplicative order of *a* is infinity.

An element $a \in R$ is called multiplicatively finite if the multiplicative order of a is finite. Consequently, idempotents of a ring are multiplicatively finite elements of order 2. We assume multiplicative order of 0 to be 0.

Definition 2.4 ([26]). A ring R is called a semi-Baer (semi-quasi Baer) ring if the right annihilator of every subset (right ideal) of R is generated by a multiplicatively finite element in R.

Clearly, every Baer (quasi-Baer) ring is semi-Baer (semi-quasi Baer). However, the converse is true if the ring is reduced (see [26, Theorem 2.4]).

Lemma 2.5 ([26, Lemma 2.1]). An element $b \in R$ is multiplicatively finite if and only if there exists $i \in N$ such that $(b^i)^2 = b^i$.

Further properties of semi-Baer (semi-quasi Baer) rings can be found in [16] and [26].

Definition 2.6 ([1]). An endomorphism σ of a ring R is called compatible if for all $a, b \in R$, ab = 0 if and only if $a \sigma(b) = 0$.

Definition 2.7 ([9]). An endomorphism σ of a ring R is called rigid if for every $a \in R$, $a \sigma(a) = 0$ if and only if a = 0.

Let *R* be a ring, (S, \leq) a strictly ordered monoid, and $\omega: S \to End(R)$ a monoid homomorphism. As in [14], a ring *R* is *S*-compatible (*S*-rigid) if ω_s is compatible (rigid) for every $s \in S$.

3. Skew Generalized Power Series Rings

The construction of generalized power series rings was considered by Higman in [7]. Paulo Ribenboim studied extensively in a series of papers (see [20]-[24]) the rings of generalized power series. In [15] Mazurek and Ziembowski generalized this construction by introducing the concept of the skew generalized power series rings.

An ordered monoid is a pair (S, \leq) consisting of a monoid S and a compatible order relation \leq such that if $u \leq v$, then $ut \leq vt$ and $tu \leq tv$ for each $t \in S$. (S, \leq) is called a strictly ordered monoid if whenever $u, v \in S$ such that u < v (i.e., $u \leq v$ and $u \neq v$), then ut < vt and tu < tv for all $t \in S$. Recall that an ordered set (S, \leq) is called artinian if every strictly decreasing sequence of elements of S is finite, and (S, \leq) is called narrow if every subset of pairwise order-incomparable elements of S is finite. Thus, (S, \leq) is artinian and narrow if and only if every nonempty subset of S has at least one but only a finite number of minimal elements.

Let *R* be a ring, (S, \leq) a strictly ordered monoid, $\omega: S \to End(R)$ a monoid homomorphism, where ω_s denote the image of *s* under ω , for each $s \in S$, that is $\omega_s = \omega(s)$, and *A* the set of all maps $f: S \to R$ such that $supp(f) = \{s \in S : f(s) \neq 0\}$ is an artinian and narrow subset of *S*. Under pointwise addition *A* is an abelian subgroup of the additive group of all mappings $f: S \to R$. For every $s \in S$ and $f, g \in A$ the set $X_s(f,g) = \{(u,v) \in S \times S : uv = s, f(u) \neq 0, g(v) \neq 0\}$ is finite by [21, 4.1]. Define the multiplication for each $f, g \in A$ by:

 $fg(s) = \sum_{(u,v) \in X_s(f,g)} f(u) \omega_u(g(v))$. (By convention, a sum over the empty set is 0). With pointwise addition and multiplication as defined above, A becomes a ring called the ring of skew generalized power series whose elements have coefficients in R and exponents in S. For each $r \in R$ and $s \in S$ one can associate the maps $c_r, e_s \in A$ defined by:

$$c_r(x) = \begin{cases} r & if \ x = 1_s \\ 0 & otherwise \end{cases}, \ e_s(x) = \begin{cases} 1_R & if \ x = s \\ 0 & otherwise \end{cases}$$

It is clear that $r \to c_r$ is a ring embedding of R into A and $s \to e_s$ is a monoid embedding of S into the multiplicative monoid of A and $e_s c_r = c_{\omega_s(r)} e_s$. Moreover, the identity element of A is a map $e: S \to R$ defined by $e(1_s) = (1_R)$ and e(s) = 0for each $s \in S \setminus \{1_s\}$.

Let *R* be a ring and σ an endomorphism of *R*. The construction of the skew generalized power series rings generalizes many classical ring constructions such as the skew polynomial rings $R[x,\sigma]$ if $S = N \cup \{0\}$ and \leq is the trivial order, skew power series rings $R[[x,\sigma]]$ if $S = N \cup \{0\}$ and \leq is the natural linear order, skew Laurent polynomial rings $R[x,x^{-1};\sigma]$ if S = Z and \leq is the trivial order where σ is an automorphism of *R*, skew Laurent power series rings $R[[x,x^{-1};\sigma]]$ if S = Z and \leq is the trivial order where σ is the natural linear order where σ is an automorphism of *R*, skew Laurent power series rings $R[[x,x^{-1};\sigma]]$ if S = Z and \leq is the ring of polynomials R[x], the ring of power series R[[x]], the ring of Laurent power series $R[[x,x^{-1}]]$ are special cases of the skew generalized power series rings, if we consider σ to be the identity map of *R*.

Recall that a ring *R* is said to be (S, ω) -Armendariz if whenever fg = 0 for $f, g \in R[[S, \omega]]$, then $f(s) \cdot \omega_s(g(t)) = 0$ for all $s, t \in S$ (see [14, Definition 2.1]). If we let ω to be the identity homomorphism, then *R* is said to be *S*-Armendariz if whenever $f, g \in R[[S]]$ (the ring of Generalized power series) satisfy fg = 0, then f(u)g(v) = 0 for each $u, v \in S$ (see [11]). If we let S = N and the order \leq is trivial, then *R* is said to be

Armendariz if whenever polynomials $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy f(x)g(x) = 0, then $a_i b_i = 0$ for every *i* and *j* (see [19]).

4. Main Results

For an element $f \in R[[S, \omega]]$, let $\pi(f)$ denote the set of minimal elements of supp (f). If (S, \leq) is totally ordered, then $\pi(f)$ consists of only one element.

Definition 4.1([13]). An ordered monoid (S, \leq) is said to be quasitotally ordered (and \leq is called a quasitotal order on S) if \leq can be refined to an order \leq with respect to which S is a strictly totally ordered monoid.

An ordered monoid (S, \leq) is called positively ordered if 1 is the minimal element of S.

Lemma 4.2. Let *R* be a ring, (S, \leq) a positively quasitotally ordered monoid, and $\omega: S \to End(R)$ a monoid homomorphism. Set $A = R[[S, \omega]]$ the ring of skew generalized power series. If *f* is a multiplicative finite element of *A*, then *f*(1) is a multiplicative finite element of *R*.

Proof. Since f is a multiplicative finite element of $A = R[[S, \omega]]$, there exists $n \in N$ such that $((f)^n)^2 = (f)^n$ (see Lemma 2.5). By hypothesis, the order \leq can be refined to a strict total order \leq on S. Consequently, there exists $s_0 \in supp(f)$ such that s_0 is a minimal element of supp(f) under the total order \leq . If $s_0 \neq 1$, then $s_0 > 1$ and f(1) = 0 which implies that $((f(1))^n)^2 = (f(1))^n = 0$. That is f(1) is a multiplicative finite element of R. If $s_0 = 1$, then we have $(f)^n(1) = ((f)^n)^2(1)$ where,

$$(f)^{n}(1) = \sum_{(u_{1}, u_{2}, \dots, u_{n}) \in X_{1}(f, f, \dots, f)} f(u_{1}) \omega_{u_{1}}(f(u_{2})) \omega_{u_{1}u_{2}}(f(u_{3})) \dots \omega_{u_{1}u_{2}\dots u_{n-1}}(f(u_{n})).$$

If at least one of $u_i > 1$, then $1 = u_1 \cdot u_2 \cdot u_3 \dots u_i \dots u_n > 1$ which is a contradiction. Thus, $u_1 = u_2 = u_3 \dots = u_n = 1$. Therefore,

$$(f)^{n}(1) = f(1)\omega_{1}(f(1))\omega_{1}(f(1)) \dots \omega_{1}(f(1))$$

Since $\omega: S \to End(R)$ is a monoid homomorphism, then we get $(f)^n(1) = (f(1))^n$. Hence $(f(1))^n = ((f)^n)^2(1) = ((f(1))^n)^2$. That is f(1) is a multiplicative finite element of R.

Proposition 4.3. Let *R* be a ring, (S, \leq) a positively quasitotally ordered monoid, and $\omega: S \to End(R)$ a monoid homomorphism. Set $A = R[[S, \omega]]$ the ring of skew generalized power series.

(1) If A is semi-Baer, then R is semi-Baer.

(2) If R is an S-compatible ring and A is semi-quasi Baer, then R is semi-quasi Baer.

Proof. (1) Let X be a non-empty subset of R. Then $B = \{c_x : x \in X\}$ is a non-empty subset of A. Since A is semi-Baer, there exists $f \in A$ such that $r_A(B) = fA$ with $((f)^n)^2 = (f)^n \text{ for some } n \in N$. Since (S, \leq) is a quasitotally ordered monoid, the order \leq can be refined to a strict total order \leq on S. Lemma 4.2 implies that f(1) is a multiplicative finite element of R. We want to prove that $r_R(X) = f(1)R$. Since $f \in r_A(B)$, then $c_x f = 0$ for all $c_x \in B$. Thus $0 = (c_x f) (1) = c_x(1) \omega_1(f(1)) = c_x(1)f(1) = x f(1)$ for all $x \in X$. Hence $f(1) \in r_R(X)$, which implies that $f(1)R \subseteq r_R(X)$. On the other hand, if $a \in r_R(X)$, then $(c_x c_a)(1) = c_x(1)\omega_1(c_a(1)) = c_x(1)c_a(1) = xa = 0$ for all $x \in X$. Thus $c_x c_a = 0$ for all $x \in X$ which implies that $c_a \in r_A(B)$ and $c_a = fg$ for some $g \in A$. Now, $a = c_a(1) = (fg)(1) = f(1)\omega_1(g(1)) \in f(1)R$. That is $r_R(X) \subseteq f(1)R$, which follows that $r_R(X) = f(1)R$. Hence, R is a semi-Baer ring.

(2) Let I be a right ideal of R. Then $I[[S, \omega]] = \{f \in A \mid f(s) \in I \text{ for any } s \in S\}$ is a right ideal of A. Since A is semi-quasi Baer, there exists $f \in A$ such that $r_A(I[[S, \omega]]) = fA$ with $((f)^n)^2 = (f)^n$ for some $n \in N$. Since (S, \leq) is a quasitotally ordered monoid, the order \leq can be refined to a strict total order \leq on S. Lemma 4.2 implies that f(1) is a multiplicative finite element of R. We want to prove that $r_R(I) =$ f(1)R. Since $f \in r_A(I[[S, \omega]])$, then gf = 0 for all $g \in I[[S, \omega]]$. Since $c_x \in$ $I[[S, \omega]]$ for all $x \in I$, we have $c_x f = 0$. Consequently, $(c_x f)(1) = 0$ which implies that x f(1) = 0 for all $x \in I$. Hence, $f(1) \in r_R(I)$, which implies that $f(1)R \subseteq r_R(I)$. On the other hand, if $a \in r_R(I)$, then i a = 0 for all $i \in I$. Since $g(s) \in I$ for all $g \in I[[S, \omega]]$ and $s \in S$, we have g(s) a = 0. Since R is S-compatible, we have $(gc_a)(s) = g(s)\omega_s(c_a(1)) = g(s)\omega_s(a) = 0$ for all $s \in S$. which implies that $c_a \in$ $r_A(I[[S, \omega]])$ and $c_a = fg$ for some $g \in A$. Now, $a = c_a(1) = (fg)(1) =$ $f(1) \omega_1(g(1)) \in f(1)R$. That is $r_R(I) \subseteq f(1)R$, which follows that $r_R(I) = f(1)R$. Hence, R is a semi-quasi Baer ring.

Proposition 4.4. Let *R* be a *S*-compatible (S, ω) Armendariz ring, (S, \leq) a quasitotally ordered monoid, and $\omega: S \to End(R)$ a monoid homomorphism. Set $A = R[[S, \omega]]$ the ring of skew generalized power series.

- (1) If R is a semi-Baer ring, then A is semi-Baer.
- (2) If R is a semi-quasi Baer ring, then A is semi-quasi Baer.

Proof. (1) Let B be a non-empty subset of A. Then $U = \{f(s) : f \in B, s \in S\}$ is a nonempty subset of R. Since R is semi-Baer, there exists $b \in R$ such that $r_R(U) = bR$ with $((b)^n)^2 = (b)^n$ for some $n \in N$. Therefore, c_b is a multiplicatively finite element of A. We want to prove that $r_A(B) = c_b A$. Since $b \in r_R(U)$, it follows that f(s)b = 0 for all $f(s) \in U$. Thus, $f(s)c_h(1) = 0.$ Since R is S-compatible, then $(fc_b)(s) = f(s)\omega_s(c_b(1)) = 0$ for all $s \in S$. Thus $c_b \in r_A(B)$ which implies that $c_b A \subseteq r_A(B)$. Now, let $f \in r_A(B)$. Then gf = 0 for all $g \in B$. Since R is a (S, ω) Armendariz ring, we get $g(u)\omega_{u}f(v) = 0$ for all $u, v \in S$. Moreover, since R is Scompatibe, we have g(u)f(v) = 0 for all $u, v \in S$. Thus $f(v) \in r_R(U) = bR$ for all $v \in S$. Therefore, for all $v \in S$ there exists $r \in R$ such that $f(v) = br = (c_b c_r e_v)(v)$. Thus $f = c_b c_r e_v$, which implies that $f \in c_b A$. That is $r_A(B) \subseteq c_b A$, which follows that $r_A(B) = c_b A$. Hence, A is a semi-Baer ring.

(2) Let J be a right ideal of A. For every $s \in S$, set $J_s = \{f(s) : f \in J, s \in S\}$, and $J^* = \bigcup_{s \in S} J_s$. Let I be the right ideal generated by J^* . Since R is semi-quasi Baer, there exists $b \in R$ such that $r_R(I) = bR$ with $((b)^n)^2 = (b)^n$ for some $n \in N$. Therefore, c_b

is a multiplicatively finite element of A. We want to prove that $r_A(J) = c_b A$. Since $b \in r_R(I)$, we have $i \, b = 0$ for all $i \in I$. Since $g(s) \in I$ for all $g \in J$ and $s \in S$, we have $g(s) \, b = 0$. Thus $g(s)c_b(1) = 0$. Since R is S-compatibe, we have $(gc_b)(s) = g(s)\omega_s(c_b(1)) = 0$ for all $s \in S$. Thus $c_b \in r_A(J)$ which implies that $c_b A \subseteq r_A(J)$. Now, let $f \in r_A(J)$. Then gf = 0 for all $g \in J$. Since R is a (S, ω) Armendariz ring, we get $g(u)\omega_u(f(v)) = 0$ for all $u, v \in S$. Moreover, since R is S-compatibe, then we have g(u)f(v) = 0 for all $u, v \in S$. Thus $f(v) \in r_R(I) = bR$ for all $v \in S$. Therefore, for all $v \in S$ there exists $r \in R$ such that $f(v) = br = (c_b c_r e_v)(v)$. Thus $f = c_b c_r e_v$, which implies that $f \in c_b A$. That is $r_A(J) \subseteq c_b A$, which follows that $r_A(J) = c_b A$. Hence, A is a semi-quasi Baer ring.

From Proposition 4.3 and Proposition 4.4 we have the following:

Theorem 4.5. Let *R* be a *S*-compatible (S, ω) Armendariz ring, (S, \leq) a positively quasitotally ordered monoid, and $\omega: S \to End(R)$ a monoid homomorphism. Set $A = R[[S, \omega]]$ the ring of skew generalized power series. Then *A* is semi-Baer (semi-quasi Baer) ring if and only if *R* is semi-Baer (semi-quasi Baer).

Corollary 4.6. Let *R* be a *S*-Armendariz ring and (S, \leq) a positively quasitotally ordered monoid. Set A = R[[S]] the ring of generalized power series. Then *A* is semi-Baer (semi-quasi Baer) ring if and only if *R* is semi-Baer (semi-quasi Baer).

Corollary 4.7. Let *R* be an Armendariz ring. Then R[x] and R[[x]] are semi-Baer (semi-quasi Baer) rings if and only if *R* is semi-Baer (semi-quasi Baer).

The following result generalize [17, Proposition 3.2].

Proposition 4.8. Let *R* be a ring, (S, \leq) a quasitotally ordered monoid, and $\omega: S \rightarrow End(R)$ a monoid homomorphism. Assume that *R* is *S*-rigid. If *f* is a multiplicative finite element of $R[[S, \omega]]$, then f(1) is a multiplicative finite element of *R* and $f = c_{f(1)}$.

Proof. Since f is a multiplicative finite element of $R[[S, \omega]]$, there exists $n \in N$ such that $((f)^n)^2 = (f)^n$ (see Lemma 2.5). Since the order \leq can be refined to a strict total order \leq on S, it follows that there exists $u_0 \in supp(f)$ such that u_0 is a minimal

element of supp(f) under the total order \leq which implies that u_0^n is the minimal element of $supp(f^n)$. For any $(u,v) \in X_{(u_0^n)^2}(f^n, f^n)$, $u_0^n \leq u$, $u_0^n \leq v$. If $u_0^n < u$, since \leq is a strict order, $(u_0^n)^2 < u \, u_0^n \leq u \, v = (u_0^n)^2$, a contradiction. Thus $u = u_0^n$. similarly, $v = u_0^n$. Hence

$$(f^n)^2 (u_0^n)^2 = \sum_{(u,v) \in X_{(u_0^n)^2}(f^n, f^n)} f^n(u) \omega_u(f^n(v)) = f^n(u_0^n) \omega_{u_0^n}(f^n(u_0^n)).$$
(4.1)

Assume that $u_0 < 1$. Since \leq is a strict order relation, it follows that $(u_0^n)^2 < u_0^n$. Hence, the minimality of $supp(f^n)$ implies that $f^n(u_0^n)^2 = 0$. From $((f)^n)^2 = (f)^n$ and equation (4.1) we infer that $f^n(u_0^n)\omega_{u_0^n}(f^n(u_0^n)) = 0$. Since *R* is *S*-rigid, we obtain $f^n(u_0^n) = 0$, which contradicts the fact that u_0^n is a minimal element of $supp(f^n)$. Hence, $u_0 \geq 1$.

Suppose that there exists $s_0 > 1$ such that $f^n(s_0^n) \neq 0$. Assume that s_0^n is the smallest with the condition under the total order \leq . Therefore, $f^n(s) = 0$ for all $1 < s < s_0^n$. From $((f)^n)^2 = (f)^n$, it implies that

$$((f)^n)^2(1) = (f)^n(1)$$
 and $(f)^n(s_0^n) = (f)^n(s_0^n)\omega_{s_0^n}((f)^n(1)) + (f)^n(1)(f)^n(s_0^n).$

Since $(f)^n(1)$ is an idempotent element of the ring R, from [17, lemma 3.1(1)], we infer

$$(f)^{n}(s_{0}^{n}) = (f)^{n}(s_{0}^{n})(f)^{n}(1) + (f)^{n}(1)(f)^{n}(s_{0}^{n}).$$

$$(4.2)$$

Multiplying equation (4.2) on the left by $(f)^n(1)$ we have

$$(f)^{n}(1)(f)^{n}(s_{0}^{n}) = (f)^{n}(1)(f)^{n}(s_{0}^{n})(f)^{n}(1) + (f)^{n}(1)(f)^{n}(s_{0}^{n}).$$

Thus $(f)^n(1)(f)^n(s_0^n)(f)^n(1) = 0$. Multiplying on the left by $(f)^n(s_0^n)$ we get $((f)^n(s_0^n)(f)^n(1))^2 = 0$ and since *R* is reduced, $(f)^n(s_0^n)(f)^n(1) = 0$. Substituting in equation (4.2) we get $(f)^n(s_0^n) = 0$, which is a contradiction. Consequently, we have f(s) = 0 for all $s \in S \setminus \{1\}$. Thus $f = c_{f(1)}$ as desired.

5. References

[1] S. Annin, Associated primes over skew polynomial rings, Communications in Algebra, 30(5):2511–2528, 2002.

[2] E. P. Armendariz, A note on extensions of baer and pp-rings, Journal of the Australian Mathematical Society, 18(4):470–473, 1974.

[3] G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Principally quasi-baer rings, Communications in Algebra, 29(2):639–660, 2001.

[4] S. U. Chase, A generalization of the ring of triangular matrices, Nagoya mathematical journal, 18:13–25, 1961.

[5] W. E. Clark, Twisted matrix units semigroup algebras, Duke mathematical journal, 34(3):417–423, 1967.

[6] A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya mathematical journal, 17:147–158, 1960.

[7] G. Higman, Ordering by divisibility in abstract algebras, Proceedings of the London Mathematical Society, 3(1):326–336, 1952.

[8] I. Kaplansky, Rings of operators (mimeographed), University of Chicago, 1955.

[9] J. Krempa, Some examples of reduced rings, In Algebra Colloq, volume 3, pages 289–300, 1996.

[10] T.-K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian groups, 236:365–377, 2004.

[11] Z. Liu, Special properties of rings of generalized power series, Communications in Algebra, 32(8): 3215–3226, 2004.

[12] S. Maeda, On a ring whose principal right ideals generated by idempotents form a Lattice, Journal of Science of the Hiroshima University, Series A (Mathematics, Physics, Chemistry), 24(3):509–525, 1960.

[13] G. Marks, R. Mazurek, and M. Ziembowski, A new class of unique product monoids with applications to ring theory, In Semigroup Forum, volume 78, pages 210–225. Springer, 2009.

[14] —, A unified approach to various generalizations of Armendariz rings, Bulletin of the Australian Mathematical Society, 81(3):361–397, 2010.

[15] R. Mazurek and M. Ziembowski, On von neumann regular rings of skew generalized power series, Communications in Algebra, 36(5):1855–1868, 2008.

[16] A. Patil, Skew polynomial extensions of semi-Baer and semi quasi Baer rings, Southeast Asian Bulletin of Mathematics, 44(1): 99-104, 2020.

[17] K. Paykan, Cleanness of skew generalized power series rings, Bulletin of the Korean Mathematical Society, 57(6):1511–1528, 2020.

[18] K. Paykan and A. Moussavi, Baer and quasi-baer properties of skew generalized power series rings, Communications in Algebra, 44(4):1615–1635,2016.

[19] M. B. Rege and S. Chhawchharia, Armendariz rings, Proceedings of the Japan Academy, Ser. A, Mathematical Sciences, 73(1):14–17, 1997.

[20] P. Ribenboim, Rings of generalized power series: Nilpotent elements. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 61, pages 15–33. Springer, 1991.

[21] _____, Noetherian rings of generalized power series, Journal of pure and applied algebra, 79(3):293–312, 1992.

[22] ———, Rings of generalized power series, Journal of algebra, 168:71–89, 1994.

[23] —, Special properties of generalized power series, Journal of algebra, 173(3):566–586, 1995.

[24] _____, Semisimple rings and von Neumann regular rings of Generalized power Series, Journal of Algebra, 198(2):327–338, 1997.

[25] R. Salem, Clean and baer generalized power series rings, In Proc. Math. Phys. Soc. Egypt, volume 83, pages 95–101, 2005.

[26] B. Waphare and A. Khairnar, Semi-Baer modules, Journal of Algebra and Its Applications, 14(10):1550145, 2015.