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In this article, influences of the fractional derivatives on the heat transfer enhancement 

by free convective flow of nanofluids in a square enclosure that includes a heat source at 

the bottom are examined. All the cavity walls are considered to be cold except the 

bottom wall that is considered thermally insulated and contains a heat source. The 

nanofluids consist of water as a base fluid and copper as nanoparticles. The fractional 

partial differential equations are transformed to non-dimensional form and then solved 

numerically using the finite differences method. The obtained numerical data are 

presented in terms of streamlines and isotherms contours as well as local and average 

Nusselt numbers. The results revealed that both of the local and average Nusselt 

numbers are supported as the order of the fractional derivatives decreases.  

Key words: Fractional derivatives;  heat transfer; heat source; nanofluids; 

finite difference method. 

 

1. INTRODUCTION 

     Study of natural convection heat transfer was and remains an area of 

interest of researchers    from the standpoint of basic and applied research. 

Natural convection has various applications in many engineering fields such 

as cooling electronic system, building insulation. It also was applied in solar 

energy collection, cooling of heat-generating, components in the electrical 

and nuclear industries [1-5]. Kandaswamy et al. [6] studied the effect of 

natural convection in a square cavity for different values of Grashof number 

and different aspect ratios and position of heated plat, the study found that 

with increase of Gr heat transfer rate increased in both vertical and horizontal 
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position of the plate and aspect ratio of heated thin plate is decreased when 

the heat transfer also decreases. The heat transfer performance and entropy 

generation of natural convection in a nanofluid-filled U-shaped cavity studied 

by Cho et al. [7], the results show that the mean Nusselt number and the total 

entropy generation are both increased as the Rayleigh number increase. The 

effect of increasing the size of the heater on natural heat transfer convection 

in square enclosure studied by Ragui et al. [8]. They found with higher 

Rayleigh number, the cavity heat transfer increases with the width of the 

heater until it reaches a critical value, where the heat transfer reaches its 

maximum. An et al. [9] could obtain hybrid numerical analytical solution of 

natural convection in a cavity with volumetric heat generation by the 

generalized integral transform technique (GITT). Mansour and Ahmed [10] 

discusses the natural convection  heat transfer in an inclines triangular 

enclosure filled with Cu-water nanofluid saturated porous medium in the 

presence of heat generation effect. Mansour et al. [11] studied that natural 

convection fluid flow and heat transfer between two enclosures filled with a 

water- based nanofluid and has been investigated numerically using finite 

difference method. Mansour et al. [12] studied natural convection fluid flow 

and heat transfer inside C-shaped enclosures filled with Cu-water nanofluid 

numerically using the finite difference method. 

 

       Fractional derivative is as old as calculus. Many researchers tried to put a 

definition of a fractional derivative. Most of them used an integral form for 

the fractional derivative. The most popular definitions are Riemann-Liouville, 

Caputo, Riesz and Gr¨unwald-Letnikov see [16-20]. There are many 

applications of the fractional derivatives used in many fields such as control 

theory of dynamical systems, nanotechnology, viscoelasticity [21-25]. The 

governing equations for fractional fluids are obtained from those of ordinary 

fluids through substituting derivatives of an integer order with fractional 

derivatives of order α. For example, α=1 corresponds to the classical 

diffusion, whereas for 0< α<1 the transport phenomena exhibits sub diffusion 

and for α >1 it exhibits super diffusion. Many of the familiar properties of 

standard (integer) derivatives such as product, quotient and chain rules are not 

provided for the fractional derivatives. Since these basic rules cannot be used, 

algebraic operations in non-integer calculus have many difficulties. For these 

reasons it was appeared a new definition well-behaved simple fractional 

derivative called “the conformable fractional derivative” depending just on 
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the basic limit definition, see [26-29]. Khalil et al. [26] introduced the 

conformable fractional derivative by using the limits in the form 

 
1
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The conformable fractional derivative has the following properties: 
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Abdeljawad [30] developed the definitions of conformable fractional and 

set the basic concepts in this new simple fractional calculus.  Iyiola and 

Nwaeze [31] proved some new results on the recently proposed conformable 

fractional derivatives and fractional integral. They also apply the D’Alambert 

approach to the conformable fractional differential equation as application. 

The main objective of this paper is to study the natural convention inside an 

enclosure filled with nanofluid using the conformable fractional derivative. 

The conformable fractional definition used to convert the governing equation 

from ordinary to fractional to study the behavior fractional Newtonian fluid 

and discuss differences about classical Newtonian fluid in previous studies 

and studies effects fractional parameter α on properties of the fluid. This 

paper provides a detailed discussion as well as a graphical representation of 

the obtained results. 

2. PROBLEM DESCRIBTION 

Let us consider a steady two-dimensional natural convection flow inside a 

square cavity of length L filled with nanofluid, as shown in Fig 1. A heat 

source is located on the lower wall with length B. The nanofluids used are 

assumed to be incompressible and laminar, the base fluid (water) and the 

solid spherical nanoparticles (Cu) are in thermal equilibrium. The thermo-

physical properties of the nanofluid are assumed constant except for the 

density variation, which is determined based on the Boussinesq 

approximation. 
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Figure1. Physical model of the problem 

 

3. MATHEMATICAL FORMULATION 

The continuity, momentum and energy equations for the laminar and steady 

state natural convection in the two-dimensional enclosure can be written in  

dimensional form as follow, see [10]. 
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The conformable fractional derivative of the integer system can be written as: 

0,x yD u D           (5)                                                                                                              
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where    is conformable fractional derivative symbol 

The boundary conditions are: 
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 We use the formulations for the thermo-physical properties of nanofluids 

according to the nanoparticles volume fraction only and which were proven 

and used in many previous studies K. Khanafer [32] as follows:                      

 The effective density of the nanofluid is given as: 

 (1 ) ,nf f p                                                                                      (10)                                                                                         

where   is the solid volume fraction of the nanofluid, f and p  are the 

densities of the fluid and of the solid fractions respectively, and the heat 

capacitance of the nanofluid given is by 

                                                               (11)                                                                                      

The thermal expansion coefficient of the nanofluid can be determined by 

              (  ) 
  (  ) 

 ,                                                         (12)                                                                              

where f  and p  are the coefficients of thermal expansion of the fluid and 

of the solid fractions respectively. Thermal diffusivity, nf   of the nanofluid: 

,
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nf
nf
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c
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
                                                                                              (13)                                                                                                                                                                                                                                                    

where nfk is the thermal conductivity of the nanofluid which for spherical 

nanoparticles, according to the Maxwell-Garnetts [33] model is: 

( ) (1 )( )  ( ) .p nf p f p pc c c      
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The effective dynamic viscosity of the nanofluid based on the Brinkman  

[34] model is given by 
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 where    is the viscosity of the fluid fraction                                                        

 Introducing the following dimensionless variables: 
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Substituting Eq. (16) into Eqs. (5)- (8), the dimensionless form of the 

governing equations are: 
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The dimensionless boundary condition for Eqs. (17-20). are as follows: 
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The local Nusselt number is defined as: 
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and the average Nusselt number is defined as: 
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4. RESULTS AND DISCUSSION 

The aim of the study was to identify the resulting changes within the fluid 

from the use of fractional derivatives. The governing equations for fractional 

fluids are obtained from those of ordinary fluids through substituting 

derivatives of an integer order with fractional derivatives of order α. 

Equations solved  numerically by finite difference method. We used  

FORTRAN program for several value of the fractional parameter α and 

(Ra=   , D =0.5, B =0.5, phi=0.05) 
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Figure 3, Profiles of the local Nusselt number for Cu-water at 
50.05, 0.5, 10 , 0.5D Ra B      
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Figure 4, Horizontal velocity along the mid-section of the enclosure for   Cu-

water at 
50.05, 0.5, 10 , 0.5D Ra B      

Figure 2, a- Streamlines and b- Isothermal for Cu-water at 
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Figure 5, Vertical velocity along the mid-section of the enclosure for   Cu-water at 

50.05, 0.5, 10 , 0.5D Ra B      
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Figure 6, Variation of the average Nusselt number for Cu-water at 

50.5, 0.5, 10B D Ra    
 

In Fig. 2 we noted that the different values of α affects the on flow of fluid 

and distribution of temperature. When α=1 this gave the same result to 

ordinary fluids. When 0.7<α<1 the Streamlines concentrated on the left side 

of the cavity and Isothermal approaching to the bottom of the cavity. Fig. 3 
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displays the profiles of the local Nusselt number for different values of the 

fractional parameter α from 0.8 to 1, we noted that the figure Parabolic 

curves, the minimum values of local Nusselt number approximately in the 

mid x-axis, curves don't intersect with x-axis for any value of α and the 

curves don't intersect each other, the local Nusselt number increases when α 

reduces. This can be attributed to the convection became more active at the 

small value of  

    the fractional parameter α. It is observed from Fig. 4 that the horizontal 

velocity curves along the mid-section of the enclosure intersect at two points, 

from the left and right sides in the figure we found that α is inversely 

proportional to velocity, and in the middle of figure α is proportional to 

velocity, but the horizontal velocity in the right side more than the left side 

this explain that the fluid moves from right to left of enclosure. Also, in Fig. 5 

the vertical velocity carves along the mid-section of the enclosure intersect at 

two points. From the left and right sides in the figure we found that by 

increasing α velocity decrease, in the middle of figure occurred the convers 

when the α increase the velocity also increase. According to the Nusselt 

number Fig. 6 showed that when α increases the average Nusselt number 

decrease   
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Figure 7, a- Streamlines and b- Isothermal for Cu-water at 
50.05, 0.5, 0.5, 10D B Ra      
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Figure 8, Profiles of the local Nusselt number for Cu-water at 
50.05, 0.5, 10 , 0.5D Ra B      
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Figure 9, Horizontal velocity along the mid-section of the enclosure for   Cu-

water at 
50.05, 0.5, 10 , 0.5D Ra B      

0.2 0.3 0.4 0.5 0.6 0.7 0.8

8

10

12

14

16

18

20

22

 

 

N
U

S

X

 

 

 

 

 

 



 Heat transfer in enclosures filled with nanofluids in case of the fractional derivatives. 85 

0.0 0.2 0.4 0.6 0.8 1.0

-25

-20

-15

-10

-5

0

5

10

15

20

25

 

 

V
(Y

=
0

.5
)

X

 

 

 

 

 

 

 
Figure 10, vertical velocity along the mid-section of the enclosure for   Cu-

water at 
50.05, 0.5, 10 , 0.5D Ra B      

 

When we used the values for α less than 0.8 we noted as show in Fig.7 that 

the motion of fluid return to the right side of cavity and there is critical value 

of α =0.69 after this value the streamlines increased on the right side of the 

cavity and became more density and isothermal  

 

Spread in cavity toward the top. This mean that the conduction became more 

active in right side of cavity. Fig. 8 displays the profiles of the local Nusselt 

number α. We noted that the minimum value for local Nusselt number was in 

the middle of cavity but after the critical value of fractional parameterα the 

minimum value became in the left of cavity. This ensures that the convection 

more active in right side. In Fig.9 we noted that when α reduce the horizontal 

velocity decreases and increases significantly, explaining that the fluid 

movement becomes more on the left side as it begins to move towards the 

right side. Also, in Fig. 10 When α reduces, the change in the vertical velocity 

shifts gradually to the left side of the enclosure, because the fluid moves from 

left to right and the fluid in the right side becomes more stable 

 

 

5. CONCLUSION 
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 In this paper we studied the natural convection in the formula of fractional 

derivatives by using conformable definition in enclosure filled with a Cu-

water nanofluid. Dimensionless governing equations are solved by finite 

difference method. The effect of the fractional parameter α on the isotherms 

and streamlines are given in the following: 

Firstly, when α lies between 1and 0.7 

 The streamlines gradually concentrated on the left side of cavity and 

isotherms increasing near to bottom.  

 Nusselt number increased when fractional parameter α reduced this 

mean that the convection became more active. 

 The horizontal velocity increase with the reduced of fractional 

parameter α. 

 The horizontal velocity in the right side of enclosure more than it is in 

the left side this explained that the movement of fluid in enclosure 

from right to left. 

 The change in vertical velocity was symmetric along the enclosure. 

 The average Nusselt number increased when α reduced. 

 Secondly, when α=0.69 

 There was critical value for the fractional parameter α =0.69.At this 

value the distribution of streamlines and isotherms are very similar to 

the case when α=1. 

 Finally, when α less than 0.69 

 The streamlines gradually concentrated on the right side of cavity and 

isotherms increasing far of bottom. 

 Nusselt number decreased in the left side of enclosure when fractional 

parameter α reduced.  

 The change in the vertical velocity shifts gradually to the left side of 

the enclosure. 

 When α reduces the horizontal velocity decreases and increases 

significantly. 

 The fluid became more stable in left side. 
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انخذفك  ٚئٛت عهٗ ححسٍٛ َمم انحزارة فٙ حبنتحأثٛزاث انًشخمبث انجشَذرص فٙ ْذِ انًمبنت ، 

فٙ حبٔٚت يزبعت فٗ ٔجٕد يصذر نهطبلت فٗ يُصف انجذار انسفهٗ  نسٕائم َبََٕٛت  انحز ٘انحزار

يٍ انًبء  فخخكٌٕ  ٛتَانًبدة انُبَٕانذٖ ٚعخبز يعشٔلا حزارٚب يع حفظ انجذراٌ انثلاثت ببردة.ايب 

ٛت إنٗ ت انجشئكسبئم أسبسٙ َٔحبص كجسًٛبث َبَٕٚت. ٚخى ححٕٚم انًعبدلاث انخفبضهٛت انجشئٛ

انخٙ حى  انفزٔق انًحذدة. ٚخى عزض انُخبئج ٚخى حهٓب عذدٚبً ببسخخذاو طزٚمت  يعبدلاث لابعذّٚ

 كلا يٍ َخبئج نمذ نٕحظ أٌ  streamlines and isotherms نكلا يٍ انحصٕل عهّٛ

  Nusselt numbersٔnumbers average Nusselt 

 انًشخمت انجشٚئٛت(لهج لًٛت االانفب)ببرايخز حكٌٕ افضم كهًب
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