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1- Introduction and preliminaries
Throughout this paper, (x z,z,) (or simply X) always mean a

bitopological space (or simply a space) on which no separation axioms are
assumed unless explicitly stated. Also, j, j =12 andj = j. Let A be a subset

of a space(x 7, z,)- The closure of A and the interior of A in the topological
space (x ,r;) are denoted by j —cI(A) andj —Int(A), respectively. We write

I — open (resp. i —closed) set to mean that the set is open (resp. closed) in
the topological space(x ,z, ).

Let (X ,z,7,) be a bitopological space. A point x e X is said to be in
the ij —5—closure [1] (resp. ij —@—closure [1]) of a subset A of X if
i —Int(j —CIU))NA =g (resp. j —CI(U)NA = ¢) for every I —open
set U containing x. The ij — & —closure (resp. ij —& —closure) of a subset A
is denoted by CIJ (A) (resp. CI{(A) )- A subset A =X s called ij —5—
closed (resp. ij —@—closed) if A =CIZ(A) (resp. A =CIZ(A) ). The
complement of an ij —§ —closed (resp. ij —@ —closed) set is called jj — 5 —
open (resp. ij —@—open). The set of all ij —5—open (resp. ij —g—open)
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sets form a topology on X will be denote by rf [7] (resp. Tf [7]). From the
definition it follows that 7 — z° <, [7]. The space (X ,z],z;) is called
the pairwise semi-regularization of (X ,z,,7,) [12]. A space (X ,7,,7,) IS

pairwise semi-regular if 7, = Ti5[12]. A bitopological space (X ,z,,7,) IS
called pairwise regular [4] if for each X € X and each I —closed set F not
containing x, there exist an i —open set U and a j —open sets V such that
xeU,FcV andU NV =g, equivalently, if for each i —open set U and
x €U , there exists an 1 —open V such that x eV < j —ClI{¥ )cU . A
space (X ,z,,7,) is pairwise regular if and only if 7 =z[16]. A subset A of a
bitopological space (X ,z,,7,) is called 1j —regular open [17] (resp. ij —
regular closed [17]) if A =i—Int(j —CI(A)) (resp.
A=i-CI(j—Int(A)) ). A is called ij—nowhere dense if
i —Int(j —CI(A)) =¢. The family of all 1] —regular open subsets of a
bitopological space (X ,7;,7,) form a base for a topology 7~ on X. It is
shown in [12] that 7" = 7°.

Remark 1.1. 1 (A) s the I —closure of A with respectto (X ,z0,77). In

general, C'f(A) will not be the I —closure of A with respect to X,70,7)).
Remark 1.2.[7] A ci —-CI(A) cCIiJfS (A) cCIijg (A).

Definition 1.3. A subset A of a bitopological space (X ,z,,7,) is called:

(1) ij —a—closed [5] if i —CI(j —Int(i —CI(A))) cA.

(2) ij—a—open [5] if X \A is ij —a—closed or equivalently if
Aci—Int(j—-CI(i —Int(A))).

(3) ij —semi closed [2] if j —Int(i —CI(A))cA.

(4) ij —semi open [2] if X \Alis ij —semi closed or equivalently if
Acj—-Cl@i —Int(A)).

(5) ij —preclosed [S]if i —Cl(j —Int(A)) cA.

(6) ij —preopen [5] if X \A is ij —preclosed or equivalently if
Aci-Int(j—-CI(A)).

(7) ij — p—closed [ 5] if j —In(i —CI(j —Int(A))) cA.
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(8) ij —pB—open [5] if X \A is ij —pB—closed or equivalently if
Acj-Cl@i-Int(j —CI(A))).

(9) ij —g —closed [3] if j —CI(A)cU whenever A cU and Uis | —
open.

(10) ij —@g —closed [9] if CI4 (A) cU , whenever A U and U is | —
open.

For a subset A of a space (X,z,z,), the ij —a —closure (resp. ij —
semiclosure, ij —preclosure, ij — g —closure) of aset A = X is the smallest
ij —a—closed (resp. ij —semiclosed, ij —preclosed, ij — g —closed) set
containing A. These closures are denoted by ij —aCl(A) (resp.
Ij —sCI(A), ij —pCI(A). ij — fCI(A) ).

Lemma 1.4. [18] Let (X ,z,,7,) be a bitopological space and A < X ,
then

(i) ij —aCI(A)=A Ui -CI(j —Int(i —CI (A))).

(i) ij —pCI(A) oA Ui —CI(j —Int(A)).

(iv) ij = SCI(A) oAU j —Int(i —CI(j —Int(A))).
2- ij —o60 —closed and ij — g5 —closed sets
Let P ={r,a,s,p, 3,5,0}, where T denote the set of all I —open sets

, & denote the set of all ij — o —open sets, s denote the set of all 1] —semi
open sets, p the set of all ij —preopen sets, /3 the set of all jj — 5 —open sets,
o thesetofall ij — 5 —opensetsand @ the set of all jj — g —open sets.
Definition 2.1. A subset AcX is called ij—qr—closed if
ji —=qCI(A) cU whenever A cU and U is ij —r —open, where r,q e P .
Remark 2.2. If r,q P, then every ij —qr —closed subset of (X ,7,,7,) IS
ij —q —closed if and only if each singleton of X is either ij —g —open or
ij —r —closed.

Definition 2.3. A subset A of a bitopological space (X ,z,,z,) is called:

(1) ij —og —closed if Clj‘f(A) —U , whenever A cU and U is i —open.

(2) ij —go —closed if j —CI(A)cU , whenever A cU and U is jj —5—
open.
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(3) ij —o6g " —closed ifCIﬁ(A)cU , Whenever A cU and U is jj —§ -
open.

(4) ij —g@—closed if j —CI(A)cU , whenever A cU and U is ij —0 -
open.

(5) ij —gg~ —closed if CI{ (A) cU , whenever A cU and U is ij —0 -
open.

In the notation of Definition 2.1, we have:

(1) ij —&g —closed is equivalent to jj — 5 —closed.

(2) 1j —go —closed is equivalent to ij —z¢ —closed.

(3) ij —og” —closed is equivalent to jj — o —closed.

(4) ij —Og —closed is equivalent to ij — &z —closed.

(5) ij —g@—closed is equivalent to jj — 76 —closed.

(6) ij —Og” —closed is equivalent to ij — @9 —closed.

(7) ij —g —closed is equivalent to jj — 77 —closed.

Definition 2.4. A subset A of a bitopological space (X ,z,,7,) is called:

(1) ij —s@—closed, if ji —s—cI(A)cu whenever A cU and U is ij —g -
open.

(2) ij —@5—closed, if ji —6—CI(A)cU whenever AcU and U is

ij —o —open.

Remark 2.5. Obviously every ji —&—closed set is ij — 56 —closed and
every ji —@—closed set is ij —@5 —closed. Since 7’ 7’ —r,, every
ij —05 —closed set is jj — 5@ —closed. If X eU and U is ij — @ —open, then
there exists an 1 —open set V such that X €V and j —CI{ )cU . Since
j—C ) is ji —s—closed, we have ji —5—CI({x})cU , thatis, every
singleton in any space is always jj — 5@ —closed. Let X be an infinite set,
p e X be a particular point and 7, =7, = the topology on X consisting of X
and all subsets of X not containing p. If x = p, then {X } is not ij —o —
openand j —Cl({x})={x,p}< ji —0-Cl({x}). Thus {x} is ij - 56 -
closed but fails to be ij — A5 —closed.

Definition 2.6. A bitopological space (X Ty, Ty) is said to be satisfies

property
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(1) A, if every jj —sp—closed set is ji —5—closed, i.e., each singleton is
either ji —s—open or ij —@— closed.
(2) B, if every ij —@5 —closed set is ji —@ — closed, i.e., each singleton is
either ji —@—open or jj — 5 — closed.

Recall that (X ,z,,z,) is pairwise T, [3], if each singleton is either j —

open or i —closed. (X ,7,,7,) 15 called pairwise weakly Hausdorff ( resp.
pairwise almost weakly Hausdorff) if (X ,z7,z7) is pairwise . (resp. T;)'

One cane observe that, (X ’Tf”[g) is pairwise Hausdorff if and only if

(X 77,77 is pairwise T if and only if (X ,z,z7) is pairwise T, if and
2

only if (X ,z7,z7) is pairwise T .

Theorem 2.7. For a bitopological space (X ,z,,7,), the following are
equivalent:

@) (X ,7,,7,) is pairwise Hausdorff.

(b) (X ,7,,7,) satisfies A.

() (X ,7,,7,) is pairwise almost weakly Hausdorff and ij — & —closed
singletons are jj —@ —closed.

Proof: (3) = (b) If (X ,7,,7,) is pairwise Hausdorff, then (X ,z7,z7) is
pairwise T, i.e., singletons are jj — g —closed. Thus (X ,7,,7,) satisfies A.
(b) = (@) If (X ,z,r,) satisfies A, then by Remark 2.5., each singleton is
either jj — s —clopen or ij — @ —closed. Hence (X ,z,z7) is pairwise T, and
thus (X ,7,,7,) is pairwise Hausdorff.

(b) = (c) Suppose that (X ,z,,z,) satisfies A. Then each singleton is clearly
either ji —o —open or ij —o —closed, i.e., (X ,7,,T,) IS pairwise almost
weakly Hausdorff. If {x }is ij —s5—closed, then {X} is either ij —5—
clopen or ij — @ —closed, hence always jj — g —closed.

(c) = (b) This is obvious.
Theorem 2.8. For a bitopological space (X ,z,,z,), the following are

equivalent:
(@) (X ,7,7,) is pairwise weakly Hausdorff.

(b) (X ,z,,7,) satisfies B.
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Proof: (a) = (b) If (X ,7,7,) is pairwise weakly Hausdorff, then each
singleton is ij — & —closed. Hence (X ,z,,,) satisfies B.

(b) = (a) This follows from the fact that each ij — @ —open singleton must be
ji —clopen.

Observation 2.9. Let (X ,7,,7,) be a bitopological space and x € X . Then

(@ {x} is either ij —preopen or ji —nowhere dense (i.e.,
j—CI@i —Int({x}) =¢).

(b) {x } is either I —open or ji —preclosed.

() {x} is i —open if and only if {X } is ij —a —open if and only if {x } is
ij —semi open.

(d) {x} is ij —preopen if and only if {x } is ij — p—open.

(e) If {x} ji —nowhere dense, then {x} is ij —a —closed and thus ij —
semiclosed, ij —preclosed and ij — 3 —closed.

(f) {x} is ji —semiclosed if and only if {x} ji —nowhere dense or ij —
regular open.

3- Characterizations of some separation axioms.

Definition 3.1. A bitopological space (X ,z,,z,)is called:

(i) pairwise semi T, [10] (resp. pairwise pre T , pairwise g -T,  if each
singleton is pairwise semiclosed (resp. pairwise preclosed, pairwise [ —
closed) .

(ii) pairwise T, if each singleton is either ij — 5 —open or j —closed.

(iii) pairwise semi T [10] if each singleton is either ji —semiopen or ij —
semiclosed.

(iv) pairwise feebly T, if each singleton is either ji —nowhere dense or ij —
clopen.

(V) pairwise TgS if each singleton is either ij —preopen or j —closed.

As an immediate consequence of observation 2.9 we note that a
bitopological space (X ,z,,7,) is pairwise semi T if and only if each
singleton is either ] —open or ij — o —closed.

Proposition 3.2. For a bitopological space (X ,z,,7,), the following are

equivalent:
(@) X is pairwise semi T, .
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(b) each singleton is either ji —g—open or jj —semiclosed.
(c) each singleton is either ji —& —open or ij —semiclosed.
(d) each singleton is either ji —& —openor ij —« —closed.
Proof: (a) = (b) = (c): Obvious.
(c) = (d) Follows from Observation 2.9.
(d) = (a): Clear.
By observing that a ji —@—open set must be ji —clopen and by

Observation 2.9 we have a space (X ,z,,z,) is pairwise feebly T if and only
if each singleton is either ji —@—open or ij —a —closed. By a similar
argument (X ,z,,z,) is pairwise pre T, if and only if each singleton is either
ji —@—open or ij —preclosed. In addition, (X ,z,,z,) is pairwise T if and
only if each singleton is either ji —@—open or | —closed.

Proposition 3.3. For a bitopological space (X ,z,,z,), the following are
equivalent:

(a) X is pairwise g-T, .

(b) each singleton is either ji —g—open or jj — 3 —closed.

(c) each singleton is either ji — 5 —open or ij — 3 —closed.

(d) each singleton is either ji — & —open or jj —preclosed.

Proof: (a) = (b) = (c): Obvious.

(c) = (d): Let x e X such that {x} is ij — g—closed. If j —Int({x})=¢.
then {x }ij —preclosed. Otherwise {x }is j —open and ij — 5 —closed and
sois ji —regular open, i.e., ji —&—open.

(d) = (a): Clear.

Definition 3.4. A bitopological space (X ,z,,7,) is called

(1) pairwise R, [14] if foreach x,y e X suchthat x ¢i —CI({y}), there
is an i —open set U and a j —open set V such that x eU , y eV and
Unv =¢.

(2) pairwise subweakly T, if ji —o—Cl({x}) =] —Cl({x}) for each
XeX.

(3) pairwise pointwise semi regular if each j —closed singleton is ji —&§ —
closed.

(4) pairwise pointwise regular if each j —closed singleton is ji — @ —closed.

Lemma 3.5. Let (X ,7,,7,) be a bitopological space, then
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() X is pairwise R, if and only if j —CI({x})=ij —0—-CI({x}) for each
X € X [15].

(b) If A =X isan ij —preopen set, then j —CI(A)=ji —6—-CI(A).
Proof:

(b) Ingeneral, | —CI(A) < ji —@—CI(A). Now let x ¢ j —CI(A). Then
there exists a j —open set U such that x eU and U (1A =¢. Then
UNj-CI(A)=¢ and so U Ni —Int(j —CI(A))=¢. From this we
have i —CI(U)Ni —Int(j —CI(A)) =¢. Since A =i —Int(j —CI(A)),
then i —CI(U)NA =¢. This shows that x e ji —9—CI(A). Therefore
ji —0-ClI(A)c j —CI(A).

Theorem 3.6. For a bitopological space (X ,z,,z,), the following are

equivalent:
(a) Each singleton is either ji —@ —closed or ij —preopen.

(b) Xis pairwise Tgs and pairwise R, .

(c) X is pairwise T and pairwise pointwise regular.

Proof: (a) = (b): Suppose that each singleton is either ji —@—closed or
ij —preopen. Then (X ,7,,7,) clearly is pairwise T . Let X eX . If {x}
is ij —preopen, ] —Cl({x})=1j —0—-CI({x}) by Lemma 3.5. If {x} is
ji —@—closed then {x}=ij —0-CI({x}) =] -CI({x}). Hence X is
pairwise R, .

(b) = (c): Follows immediately from Lemma 3.5.

(c) = (a): Follows directly from the definitions.
Theorem 3.7. For a bitopological space (X ,z,,z,), the following are

equivalent:
(a) Each singleton is either ji — & —closed or ij —preopen.

(b) X is pairwise Tgs and pairwise subweakly T, .

(c) X is pairwise Tgs and pairwise pointwise semi regular.

Proof: (a) = (b): Suppose that each singleton is either ji —& —closed or
ij —preopen. Then (X ,z,,7,) clearly is pairwise T - LetX eX . If{x}is

1] —preopen, then j —CI({x}) = j —Cl(i —Int(j —ClI({x}))). ie.,
j —-CI{x}) is ji —regular closed set and o)
j—Cl{x})=ji —0-CI({x}). If {x} is ji —5—closed, then
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obviously we have | —Cl({x})=]i —o—-Cl({x}). Thus X is pairwise
subweakly T .
(b) = (c) = (a): It is clear.
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