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INTRODUCTION  

 

Besides the curves, rotational surfaces were among the earliest topics in 

differential geometry to be addressed. In both engineering and science, the utilization of 

surfaces of revolution is crucial. Because they occur frequently in nature, surfaces of 

revolution have long been recognized as both common and well-known in geometric 

modeling. For instance, in mathematics, human artifacts, and technological practice. In 

addition, several items from daily life, including cans, furniture legs, and table glasses. 

They serve as illustrations of revolution surfaces. Additionally, the simple act of turning 

wood creates surfaces that are in a state of revolution [1, 2]. 

Weingarten first introduced W-surfaces, also known as Weingarten surfaces, in 

1861 in relation to the challenge of identifying all surfaces that are isometric to a given 

surface of revolution. They have attracted geometers’ interest over time. W-surface 

applications for computer-aided design and shape analysis are shown in [3]. In Euclidean 

3-space, a linear Weingarten surface, also known as a LW-surface, is a surface whose 

mean curvature H and Gaussian curvature G meet the relation , where 

. Numerous geometers tried to find examples of LW-surfaces for a very long 
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          In this paper, a new technique to study some characteristic properties 

of revolution surfaces in Euclidean 3-space . We construct and obtain the 

necessary conditions of Weingarten, linear Weingarten, bi-conservative, 

harmonic, bi-harmonic and stability revolution surfaces in . Using 

computer-aided geometric design, we present and plot many applications. 

 



M. A. Soliman et al. 

 

323 

period; for instance, see [4]. In the general case, the classification of LW-surfaces is now 

mostly undefined. They have historically been of interest to geometers, especially when 

the surface is closed, as shown in [5-10]. 

 

One of the most attractive geometric objects and ones that have significant 

physical significance are harmonic surfaces. These are surfaces in space that localise area 

minimization, meaning that any sufficiently small section of the surface has the smallest 

area among all surfaces sharing the same boundary. In the real world, they manifest 

themselves spontaneously. According to physical laws, a soap film that is spanned by a 

specific boundary curve will take on the appearance of a harmonic surface. There are 

numerous applications for these surfaces. Any Riemannian manifold of at least three 

dimensions, or a manifold with a smooth field of inner products on their tangent spaces, 

is used to study them. In complex Euclidean spaces  for  are rather special 

examples harmonic surfaces [11]. 

The study of bi-conservative and bi-harmonic surfaces is nowadays a very active 

research subject. Many enjoyable results of these types have been obtained in the last 

decade. In the last few years, from the theory of bi-harmonic submanifolds, arose the 

study of bi-conservative submanifolds that enforced themselves as a very hopeful and 

interesting research topic. Closely related to the theory of bi-harmonic submanifolds, the 

study of bi-conservative submanifolds is a very recent and delectable topic in the field of 

differential geometry [12]. 

The differential geometry of stability issues involving generic surfaces has 

recently piqued the curiosity of several geometers. As more researchers became involved 

and saw outcomes over the past few decades, this interest grew quickly. One may 

specifically mention [13-18]’s works. The interaction of classical differential geometry 

with the calculus of stability is one of its most fascinating and significant features. The 

theory of harmonic surfaces, for instance, is where the roots of the calculus of stability 

can be found. Recent years have seen the careful study of a seemingly novel sort of 

stability problem proposed by the stability principles that give rise to the general theory 

of relativity’s field equations. One is, at least implicitly, concerned with a multiple 

integral in the calculus of stability in the case of the earlier applications [15, 19]. 

In this paper, we studied the possibility of obtaining the necessary conditions for 

revolution surfaces to become  type L/W-surfaces, bi-conservative, harmonic, bi-

harmonic and stable in Euclidean 3-Space . In the last section, we were able to solve 

the previous equations by giving special cases and using a new method. We got  

theoretical or numerical solutions to those equations. Then, we translated these results 

into geometric shapes. 
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2. Geometric preliminaries 

 

In this section, we introduce some basic definitions and relations for our analysis 

for the surfaces in Euclidean 3-space [11, 17, 20-26].  

Definition 2.1 [20, 21] We say M a revolution surface which is generated by a plane 

curve  when it is rotated around a straight line in the same plane.The parametrization 

of the plane curve is given by  

  (2.1) 

 Then the parametrization of revolution surface is given by  

  (2.2) 

The unit normal vector field of M can be defined by  

  (2.3) 

The first fundamental form I of the surface M is given by  

  (2.4) 

With the coefficients  

  (2.5) 

The discriminate g of the first fundamental quadratic form is  

  (2.6) 

The second fundamental form II of the surface M is given by  

  (2.7) 

With the coefficients  

  (2.8) 

The discriminate h of the second fundamental quadratic form is  

  (2.9) 

Under this parametrization of the surface M, the Gaussian curvature  
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and the mean curvature respectively, are given by 

  (2.10) 

     where the principal curvatures at a point p on the surface M, denoted    

     by  and  are the global maximum and the global minimum of the sectional  

     curvature at the point p.  And  denotes the associated matrix with its inverse 

     ( ). i.e,  

Definition 2.2 [26] W-surfaces are the surfaces which satisfying , 

or, the corresponding Jacobian determinant is identically zero, i.e,  

  (2.11) 

We can rewrite the condition (2.11) as follow 

 . (2.12) 

Definition 2.3 [22, 23] LW-surfaces are the surfaces which satisfying the linear equation  

 . (2.13) 

When the constant b=0, a LW-surface reduces to a surface with constant Gaussian 

curvature. And when the constant a =0, a LW-surface reduces to a surface with constant 

mean curvature. In such a sense, the LW-surfaces can be regarded as a natural 

generalization of surfaces with constant Gaussian curvature or with constant mean 

curvature.  

Definition 2.4 [24]. A surface M in Euclidean 3-space is bi-conservative if the mean 

curvature function H satisfies  

 . (2.14) 

This condition can be split into two differential equations as follows 

  (2.15) 

 , (2.16) 

where   is given by  
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 (2.17)     

Definition 2.5 [11]. A smooth surface in  is a harmonic surface (minimal surface) if its 

mean curvature equals zero at every point, i.e, , where  and  are the 

principal curvatures. 

Definition 2.6 [25]. A surface M in Euclidean 3-space is said to be bi-harmonic if it 

satisfies the equation , where  is the vector function representation of 

the surface M. 

According to the well-known Betrami’s formula  , the bi-harmonic 

condition in  is also known as the equation  

  (2.18) 

Where  is the Laplacian operator (Laplacian-Beitrami operator) with respect to 

the first fundamental form of X and is given by  

  (2.19) 

where,  denotes the associated matrix with its inverse . i.e,  and 

 and .  

Definition 2.7 [17]. The oriented compact immersion  is stable 

 with respect to the integral  iff the following condition is valid  

                                  (2.20) 

 where dA is the volume element of M and  is given by (2.19). 
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3.  GENERAL PROPERTIES OF REVOLUTION SURFACE M 

 

In this section, we shall describe and derive the fundamental quantities of 

revolution surface M. Some properties of this surface are introduced. The general 

conditions for this surface to become of type L/w-surface, bi-conservative, harmonic, bi-

harmonic and stable are derived. 

 

From (2.2 ) the coefficients of the first fundamental forms of the surface M are given by  

  (3.1) 

 It is convenient to assume that the rotating curve is parameterized by arc length, that is, 

that  

 , (3.2) 

and  is always positive, it follows that the parabolic points are given by either  

(the tangent line to the generator curve is perpendicular to the axis of rotation) or  

 (the curvature of the generator curve is zero). A point which satisfies 

both conditions is a planar point, since these conditions imply that . 

 

   By differentiating (3.2) we obtain . Therefore, the metric of the first 

fundamental form g of the surface (2.2) is given by  

 

                                                           (3.3) 

 

The unit normal vector field N is given by  

 

               (3.4) 

 Consequently, the coefficients of the second fundamental form are written as follows:  

 

                (3.5) 

 Hence the metric of the second fundamental form h is given by  

             (3.6) 

 

 Thus, and using (3.2), the Gaussian curvature is given by 

 (3.7)   

 The principal curvatures of a surface of revolution are given by 

 

          (3.8) 

 

 hence, the mean curvature of a such surface is  

 

           ,  (3.9) 

 and  are given by  
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                    (3.10) 

 

From (2.2) if this is taken as axis of z and u denotes perpendicular distance from it, the 

parametrization of the surface M is given by  

 

                     (3.11) 

  

Corollary 3.1 The Gaussian and mean curvature G and H of surface (3.11) are given by  

                        (3.12) 

 

     and  are given by  

 

         (3.13) 

  

 From the foregoing results, one can get the following:  

 

Lemma 3.1  The coordinate patch of M is orthogonal   

  

Lemma 3.2  The coordinate patch of M is principal   

  

Lemma 3.3  The coordinate patch of M is of type asymptotic orthogonal 

           . 

 

Lemma 3.4  U-clairaut patch ,  .  

  

Lemma 3.5  V-clairaut patch   

 

Remark 3.1  We note that the conditions in lemmas (3.1, 3.2 and 3.4) are vanished 

identically. While the conditions in lemmas (3.3 and 3.5) are valid for a constant function 

  

 

 Since , we have:  

 

Corollary 3.2 The surface  is W-surface.  

 

Corollary 3.3 The revolution surface  is LW-surface if the following equation is valid 

 

                                             (3.14) 

  

where  and  are constants.  
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Theorem 3.1 The revolution surface  is bi-conservative if the following two equations 

are valid  
 

  (3.15) 

  

        (3.16) 

 

where  are given by 

 

 (3.17) 

 

Since , we have:  

 

Remark 3.1 The condition (3.16) is vanished identically.  

  

Corollary 3.4 The surface  is harmonic if the following equation is valid 

  

                          (3.18) 

This equation is nonlinear ODE of second order and its solution as follow 

                              (3.19) 

where and  are two arbitrary constants. Thus, we have: 

 

Corollary 3.5 The surface M is harmonic if the function  has the form (3.19). 

  

Theorem 3.2 The revolution surface  is bi-harmonic if the following conditions are 

valid 

 

               (3.20) 

 

                             (3.21)                                                                

    

where  is given by  

 

              (3.22) 

  

Theorem 3.3 The revolution surface  is stable iff the following condition is valid 

 

. (3.23) 
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4.  APPLICATIONS ON REVOLUTION SURFACE  

  

  In the previous section, several of nonlinear ODEs were appeared. Thus their general 

solutions are much more complicated and can only be solved in special cases. Since the 

cases where these equations can be explicitly integrated are rare, numerical solutions of 

these equations are the only way to get with the previous conditions. That is why in this 

section, a new technique is used, hence we have investigated some of special analytical 

and numerical solutions using Matlab program v. 18.  

 

Here, we give the following cases:  

 

4.1. Case 1. If we put , we denote this surface by  (see Fig. 1).  

So using Eqs. (3.14 - 3.22), we have the following corollaries: 

 

(i)  is Lw-surface if  

(ii) is not bi-conservative because the condition (3.15) equal . 

(iii)  is not harmonic because the condition (3.18) equal . 

(iv)  is not bi-harmonic because the condition (3.20) equal . 

(v)  is unstable because the condition (3.22) equal .  

     

 4.2. Case 2. If we put , we denote this surface by  (see Fig. 2). 

Based on the Eqs. (3.14-3.22), we have the following corollaries: 

(i)  is Lw-surface if the following equation is valid  

  

                                             (4.1) 

      If we take =3, =4, say, we get  

  

(ii)  is bi-conservative if  

(iii)  is harmonic if . 

(iv)  is not bi-harmonic because the equation (3.20) equal . 

(v)  is stable iff the following equation is valid  

 

               (4.2) 

 

       and the real solution of this equation is given by  

       and the other two roots of Eq. (4.2) are complex.                                      

       The Eq. (4.2) and its real solution are illustrated in (Fig. 3). 

 

 

 

 



M. A. Soliman et al. 

 

331 

       

 
         Figure 1:                                           Figure 2:  

 

 
 

           Figure 3: Stability of                                        Figure 4: Graph of  

 

 

4.3. Case 3.  If we put , we denote this surface by  (see Fig. 4). 

Similarly, using (3.14-3.22), we have the following corollaries: 

 

(i)  is Lw-surface if the following equation is valid 

                                   (4.3)  

                                     

        The Eq. (4.3) is illustrated in (Fig. 5). 
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(ii)  is bi-conservative if the following equation is valid 

 

            (4.4) 

The solution of this equation is given by  

 

         (4.5) 

  

The Eq. (4.4) and its solution are illustrated in (Fig. 6). 

 

(iii)  is harmonic if  

(iv)  is bi-harmonic if the following polynomials are valid 

  

                (4.6) 

 

                       (4.7)  

 

where  is given by 

 

                       (4.8)  

 

The Eqs. (4.6) and (4.7) are illustrated in (Fig. 7). 

 

(v)  is stable iff the following polynomial is valid 

 

         (4.9) 

 

The numerical solution of this equation is   

 

The Eq. (4.9) and its numerical solution are illustrated in (Fig. 8). 

 

 4.4. Case 4.  If we put , we denote this surface by  (see Fig. 9). 

Analogously, from Eqs. (3.14-3.22), we have the following corollaries: 

(i)  is not Lw-surface because the Eq.(3.14) equal .  

if . 

(ii)  is bi-conservative because the equation (3.15) is valid. 

(iii)  is harmonic because the equation (3.18) is valid. 

(iv)  is bi-harmonic because the conditions (3.19) and (3.20) are valid. 

(v)  is stable because the condition (3.22) is valid. 
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        Figure 5: Lw-surface of                         Figure 6: Bi-conservative of  

 

 

 
        Figure 7: Bi-harmonic of                        Figure 8: Stability of  

 

 

 

 

 
       Figure 9: Graph of                                  Figure 10: Graph of  
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 4.5. Case 5.  If we put , we denote this surface by  (see Fig. 10). 

Taking into account the Eqs. (3.14-3.22), we have the following corollaries: 

 

     (i)  is Lw-surface if the following equation is valid 

 

                          (4.10) 

 

The solution of this equation is  

  

     The equation (4.10) and its solution are illustrated in (Fig. 11). 

 

       (ii)  is bi-conservative if the following equation is valid  

 

              (4.11)  

 

The numerical solution of this eqation is  

 

The Eq. (4.11) and its numerical solution are illustrated in (Fig. 12). 

 

     (iii)  is harmonic if the following equation is valid .  

                        (4.12) 

The numerical solution of this equation is                                            

The Eq. (4.12) and its numerical solution are illustrated in (Fig. 13). 

 

     (iv)  is bi-harmonic if the following polynomials are valid  

 

                    (4.13)  

 

                     (4.14)  

 

where  is given by  

 

       .  (4.15)  

 

The Eqs. (4.13) and (4.14) are illustrated in (Fig. 14). 

 

      (v)  is stable iff the following equation is valid  

 

   (  

 

The numerical solution of this equation is  

 

The Eq. (4.16) and its numerical solution are illustrated in (Fig. 15). 
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                   Figure 11: Lw-surface of                   Figure 12: Bi-conservative of  

 

 

 

 
                Figure 13: Harmonic of                      Figure 14: Bi-harmonic of  

 

 
 

                  Figure 15: Stability of                          Figure 16: Graph of  
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 4.6. Case 6.   If we put , we denote this surface by  (see Fig. 16). 

In view of (3.14-3.22), we have the following corollaries: 

 

(i)  is Lw-surface if the following equation is valid  

 

             (4.17)  

The numerical solution of this equation when =3,  

is  

The Eq. (4.17) and its solution are illustrated in (Fig. 17). 

 

(ii)  is bi-conservative if the following equation is valid  

 

             (4.18) 

 

The numerical solution of this equation is   

 

The Eq. (4.18) and its numerical solution are illustrated in (Fig. 18). 

 

(iii)  is harmonic if the following equation is valid.  

 

                   (4.19) 

 

The numerical solution of this equation is  

 

The Eq. (4.19) and its numerical solution are illustrated in (Fig. 19). 

 

(iv)  is bi-harmonic if the following polynomials are valid 

 

        , (4.20)  

  

              (4.21)  

    

  where  is given by  

 

        (4.22)  

 

  The Eqs. (4.20) and (4.21) are illustrated in (Fig. 20). 

 

(v)  is stable iff the following equation is valid  

              (4.23)  

 The numerical solution of this equation is  

 The Eq. (4.23) and its numerical solution are illustrated in (Fig. 21).  
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          Figure 17: Lw-surface of                       Figure 18: Bi-con. of  

  
 

 

 

 
     Figure 19: Harmonic of  

 

 

 

 
Figure 20: Bi-harmonic of             Figure 21: Stability of  
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5.  CONCLUSION 

 

This work simply provided an approach to study revolution surfaces in a new 

form. General properties of these surfaces are obtained. We find that choosing different 

forms of the function  resulted in many revolution surfaces which have many uses in 

our daily life as in the figures No. (1, 2, 4, 9, 10 and 16). We were able to translate the 

basic equations of LW, bi-conservative, harmonic and stability revolution surfaces in the 

form of curves and then clarify the solutions of these equations theoretically and 

numerically, which are the real roots of those equations in the form of circles located on 

those curves as in the figures No. (3, 6, 8, 12, 13, 15, 17 and 18). As for the bi-harmonic 

condition, which was split into three conditions, the first two conditions denoted by  

and  as a functions of the local coordinate on M, could be translated as two surfaces in 

3-dimensional space, and the third condition denoted by  as a function of one variable u 

that represents a curve in the plane as in the figures No. (7, 14 and 20).  
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