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INTRODUCTION  

 

       One of the earliest calculus to be developed is fractional calculus. It dates back to the  

century, when Newton and Leibniz created conventional calculus. Leibniz was aware that there are 

other ways to operate on functions except in an integer order when he began to develop the 

fundamental concepts of differentiation and integration. Leibniz himself questioned what would 

happen if the order of differentiation from integer values to fractions were expanded. Along with the 

integer order of differentiation, which is widely acknowledged today, Leibniz also indicated in a letter 

to L'Hopital that he had discussed the topic of differentiation [3]. 

       Today, it is now known relatively natural to extend integer order differentiation to a fractional 

order of differentiation. Numerous books and articles on the topic of fractional derivative applications 

show that the issues addressed by Leibniz more than 300 years ago are still important (see [4, 5]). 

       Recent years have seen the emergence of fractional calculus as a branch of pure mathematics with 

numerous applications in physics and engineering [6, 7]. One can look at the specific characteristics of 

fractional derivatives, there are numerous definitions of fractional derivatives. Unlike traditional 

derivatives, which are defined locally, there are numerous definitions of fractional derivatives that are 

not local (see Refs. [8, 9]). 
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      In this paper, our aim is to study some of the properties of revolution 

surfaces in Euclidean 3-space  that were studied in [1], using new definition of 

fractional derivative called conformable fractional    derivative [2]. 
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       The conformable fractional derivative seems to be a natural extension of the usual derivative, and it 

coincides with the known fractional derivatives on polynomials. Clearly, if  is the order of the 

fractional derivative and it equals 1, then the definition coincides with the classical definition of first 

derivative. The conformable definition is the simplest and most natural and efficient definition of 

fractional derivative of order  . We should remark that the definition include any [2].   

 

       Newly, the authors in [2] and [10] define new well-behaved simple fractional derivatives                    called 

the conformable fractional derivative depending just on the basic limit definition of the derivative. 

 

       Khalil et al. [2] have introduced a new derivative called the conformable fractional derivative of f  

of order , which is defined in Def. (2.8). They then defined the fractional derivative of higher order 

(i.e., of order  1). They also defined the fractional integral of order 0  only. They then 

proved the product rule, and the fractional mean value theorem. 

Katugampola introduced in [10] the new derivative which is defined in Def. (2.9). As a consequence of 

the above definitions, the authors in [2, 10] showed that the  derivatives obey the product rule and 

quotient rule and have results similar to Rolle’s theorem and the mean value theorem of classical 

calculus. 

 

       Along with curves, surfaces of revolution were among the first topics covered in differential 

geometry. In both engineering and science, the use of surfaces of revolution is crucial. Because they 

occur frequently in nature, surfaces of revolution have long been recognized as both common and well 

known in geometric modeling. In addition, several items from daily life, including cans, furniture legs, 

and table glasses. They serve as illustrations of revolution surfaces [11, 12]. 

 

       Weingarten first introduced W-surfaces, also known as Weingarten surfaces, in 1861 in relation to 

the challenge of identifying all surfaces that are isometric to a given surface of revolution. They have 

attracted geometers' interest over time. W-surface applications for computer-aided design and form 

analysis are shown in [13]. In Euclidean 3-space, a linear Weingarten surface, also known as a LW-

surface, is a surface whose mean curvature H and Gaussian curvature K meet the relation a H + b K = 

c, where a, b, and c  R. Numerous geometers tried to find examples of LW-surfaces for a very long 

period; for instance, see [14]. The classification of LW-surfaces in the general case is almost 

completely open today. Along the history, they have been of interest for geometers, mainly                                when the 

surface is closed; see [15–20]. 

 

       One of the most attractive geometric objects, and ones that have significant physical significance 

are harmonic surfaces. These are surfaces in space that minimize area, meaning that any sufficiently 

small section of the surface has the smallest area among all surfaces sharing the same boundary. In the 

real world, these surfaces can be seen spontaneously, such as in the appearance of a soap film spanned 

by a specific boundary curve, following physical laws. These surfaces are common in mathematics 

and physics. Any Riemannian manifold of at least three dimensions, or a manifold with a smooth field 

of inner products on their tangent spaces, is used to study them. Unique harmonic examples include 

holomorphic curves in complex Euclidean spaces of dimension greater than 1 [21]. 

       The study of bi-conservative and bi-harmonic surfaces is nowadays a very active research area.  

Many enjoyable results on these types have been obtained in the last decade.  In the last few years, 

from the theory of bi-harmonic submanifolds, arose the study of bi-conservative submanifolds that 

enforced itself as a very hopeful and interesting research topic [22]. 

 

       The differential geometry of stability issues involving generic surfaces has recently piqued the 

curiosity of several geometers. As more researchers became involved and saw outcomes over the past 

two decades, this interest grew quickly. One may specifically cite works by [23-28]. The interaction of 
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classical differential geometry with the calculus of stability is one of its most fascinating and 

significant features. The theory of harmonic surfaces, for instance, is where the roots of the calculus of 

stability can be found. Recent years have seen the careful study of a seemingly novel sort of stability 

problem proposed by the stability principles that give rise to the general theory of relativity's field 

equations. The earlier applications were the case [25, 29]. 

      In this paper, we investigate some new results on the conformable fractional derivative, which has 

been recently proposed, and whose simple definition allows for many extensions of some properties in 

differential geometry of revolution surfaces, for which the applications are essential in the fractional 

differential models. 

2. Basic concepts 

 

2.1. Geometric preliminaries 

      In this section, we introduce some basic definitions and relations for our analysis for the 

surfaces in Euclidean 3-space. 

Definition 2.1.  [30, 31] We say M a revolution surface which is generated by a plane curve  

when it is rotated around a straight line in the same plane. The parameterization of the plane curve is 

given by 

                                                                 (2.1) 

Then the parameterization of revolution surface is given by 

 

                        (2.2) 

The coefficients of the first and second fundamental forms of the surface M are given by 

                                                               (2.3)  

                                              =   , = 0. 

It is convenient to assume that the rotating curve is parameterized by arc length, that is, that 

                                                                    .    (2.4) 

The Gaussian curvature G is given by 

                                                              ,    (2.5) 

and  is always positive. It follows that the parabolic points are given by either  = 0 
(the tangent line to the generator curve is perpendicular to the axis of rotation) or 

= 0 (the curvature of the generator curve is zero). A point which satisfies both 

conditions is a planar point, since these conditions imply that  =  = . 

It is convenient to put the Gaussian curvature in still another form. By differentiating (2.4) we                      
obtain . Thus, 

                                   (2.6) 

The principal curvatures of a surface of revolution are given by 

                                                                ,                                              (2.7) 

hence, the mean curvature of  such a surface is  

                                                                       (2.8)
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Definition 2.2. [32] W-surfaces are the surfaces which satisfying , 

or, the corresponding Jacobian determinant is identically zero, i.e,  

 

                                                                                   (2.9) 

We can rewrite the condition (2.9) as follows 

                                       (2.10) 

Definition 2.3. [33, 34] LW-surfaces are the surfaces which satisfying the linear equation 

                                          a G + b H = c, (a, b, c) ≠ (0, 0, 0)  R.                                                (2.11)     

When the constant b=0, a LW-surface reduces to a surface with constant Gaussian curvature. And 

when the constant a =0, a LW-surface reduces to a surface with constant mean curvature. In 

such a sense, the LW-surfaces can be regarded as a natural generalization of surfaces with 

constant Gaussian curvature or with constant mean curvature. 

Definition 2.4. [35]  A surface M in Euclidean 3-space is bi-conservative if the mean curvature 

function H satisfies  

                (2.12) 

This condition can be split into two partial differential equations as follows 

                (2.13) 

 

                (2.14) 

 

Where   is given by  

                                              (2.15) 

Definition 2.5. [21] A smooth surface in  is a harmonic surface (minimal surface) if its mean 

curvature equals zero at every point, i. e,  +  = 0, where  and  are the principal 

curvatures. 

Definition 2.6. [36]. A surface M in Euclidean 3-space is said to be bi-harmonic if it satisfies the 

equation , where  is the vector function representation of the surface M. 

According to the well-known Betrami’s formula  , the bi-harmonic condition in  

 is also known as the equation  

                 (2.16) 

where  is the Laplacian operator (Laplacian-Beitrami operator) with respect to 

the first fundamental form of X and is given by  

                                                                                          (2.17) 

where,  denotes the associated matrix with its inverse . i.e,  and  

and . 

Definition 2.7. [27]. The oriented compact immersion  is stable  with respect to the integral 

 iff the following condition is valid  

                                                                                        (2.18) 

where dA is the volume element of M and  is given by (2.17).  
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2.2. Conformable fractional derivative 

Definition 2.8. [2] Given a function f: [0,  Then the conformable fractional derivative of f of 

order  is defined by 

                                  for all t  

      We will sometimes, write  for , to denote the conformable fractional derivatives      of f 

of order . In addition, if the conformable fractional derivative of f of order exists, then we               simply 

say f is -differentiable. 

One can easily show that satisfies all the properties in the following theorem. 

Theorem 2.1. Let  and f, g be -differentiable at a point t . Then 

 (1) . 

 (2) . 

 (3)  

 (4)  

 (5)  

 (6) If, in addition, f is differentiable, then  

 Conformable fractional derivative of certain functions 

(1)  

(2)  

(3)  

(4)  

(5)  

(6)  

(7)  

(8)  

Definition 2.9. [10]. Let f : [0,  and t . Then the fractional derivative of f of order  is 

defined by 

                                                            (2.19) 

for  t  If f is -differentiablein some (0, a), a  and exists, then 

define 

 

 
 
 
 

 

 

 

3. GENERAL PROPERTIES OF REVOLUTION SURFACE M USING CONFORMABLE 

FRACTIONAL CALCULUS 
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      In this section, we shall describe and derive the fundamental quantities of revolution surface 

M (2.2) using conformable fractional calculus. Some properties of this surface are introduced. The 

general conditions for this surface to become type L/w-surface, bi-conservative, harmonic, bi-

harmonic and stable are derived. 

Using theorem (2.1), we have the following: 

Corollary 3.1. The condition (2.4) will become 

                                                                          =    (3.1) 

Proof 

Since  =  (u) and  =  (u), then, Tα ( ) = u
1−α

 , Tα ( ) = u
1−α

 

⇒ (u
1−α

)
 2

 + (u
1−α

)
 2

 = 1, then = . 

By differentiating this condition using conformable fractional calculus, we get 

                                                                +  = (  − 1)  .    (3.2) 

Using conformable fractional calculus, Eq. (3.1) and Eq. (3.2) we shall compute the properties of 

the surface (2.2) as follows: 

The coefficients of the fractional first fundamental form are given by 

                                                   = 1, =  and = 0,                   (3.3) 

therefore, the fractional metric of the first fundamental form g of the surface (2.2) is given by 

                                                    = .                               (3.4) 

The fractional unit normal vector field N is given by 

                                                          (3.5) 

Consequently, the coefficients of the fractional second fundamental form are written as follows: 

                             ,  and ,               (3.6) 

hence the fractional metric of the second fundamental form h is given by 

                                 =   ( ).          (3.7) 

Corollary 3.2. The fractional Gaussian and mean curvature G and H of surface (2.2) are given                   by 

                                                       (3.8) 

                                                                                   (3.9) 

And  are given by 

                                                

Lemma 3.1. If we put α = 1 in Eqs. (3.8) and (3.9), we obtain the Gaussian and mean curvature              in 

integer case Eqs. (2.6) and (2.8), respectively. 

From (2.2) if this is taken as axis of z and u denotes perpendicular distance from it, the 

parametrization of the surface M is given by 

                                                                                               (3.11) 
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Corollary 3.3. The fractional Gaussian and mean curvature G and H of surface (3.11) are given by 

                                                                        (3.12) 

                                                                                                              (3.13) 

And  are given by 

 

                                                      (3.14) 

Corollary 3.4. The revolution surface  is fractional LW-surface if the following equation is        

valid 

                                      2 ( ) + ( ) 2 =0,               (3.15) 

where m1, m2 and m3 are constants. 

Theorem 3.1. The revolution surface   is fractional bi-conservative if the following two 

equations are valid 

                (3.16) 

                                                [ ] =0, 

        

,                  (3.17) 

where  and  are given by 

  

Since , we have:  

Remark 3.1. The condition (3.17) is vanished identically.  

Corollary 3.5. The surface  is fractional  harmonic if the following equation is valid 

                                                                                                                     (3.19)  

Theorem 3.2. The revolution surface  is fractional bi-harmonic if the following conditions are valid  

                                                                                         (3.20) 

 

                 

                          +                          (3.21)

                                                                

where  is given by  

  (1-2 )(2-3 )  

        + 2  

              (3.22) 

Theorem 3.3. The revolution surface  is fractional stable iff the following condition is valid 

 
                   (3.23) 
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4.  APPLICATIONS ON REVOLUTION SURFACE  

     In this section, we studied possibility of obtaining the necessary conditions for revolution 

surfaces in special cases to become type fractional L/W-surfaces, bi-conservative, harmonic, bi- 

harmonic and stable in Euclidean 3-space . The general conditions for these surfaces in the 

form nonlinear differential equations, so we were able to solve it using a new method. we get the 

theoretical or numerical solutions to those equations. Then, we translated these results into 

geometric shapes using computer-aided geometric design. 

Here, we give the following cases: 

4.1. Case 1. If we put  = u + 1, we denote this surface by . 

So using Eqs. (3.15-3.17) and (3.19-3.23) , we have the following corollaries: 

(i)  is Lw-surface if the following equation is valid 

                                      2  ( − 1)  +  − 2  = 0.                                                        (4.1) 

We shall take some different values of α in Eq. (4.1) as follows: 

(a) At  = 1, m1 = 2, m2 = 3, m3 = 4, we have 

                                                          u = 3/8.                                                                       (4.2) 

(b) At  = 0.75, m1 = 2, m2 = 3, m3 = 4, we have 

                                                      3  −  − 8 = 0.                                                                                (4.3) 

(c) At = 0.5, m1 = 2, m2 = 3, m3 = 4, we have 

                                                    3  − 2  − 8 = 0.                                                                            (4.4) 

(d) At  = 0.1, m1 = 2, m2 = 3, m3 = 4, we have     

                                                 15  − 18  − 40 = 0.                                                                   (4.5) 

The solutions of Eqs. (4.3 – 4.5) are complex. So, we have the following: 

Corollary 4.1. The surface  is Lw-surface in integer alpha case and not Lw-surface in the 

fractional cases. 

The Eqs. (4.2 – 4.5) are illustrated in (Fig. 1). 

(ii)  is bi-conservative if the following equation is valid 

                                                            = 0.        (4.6) 

(iii)  is harmonic if the following equation is valid 

                                                            = 0.                                                                    (4.7) 

Putting  = 1, 0.75, 0.5, 0.1 in conditions (4.6) and (4.7) one can see that these conditions are 

not satisfied, so we have the following: 

Corollary 4.2. The surface  is neither bi-conservative nor harmonic. 
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(iv)  is bi-harmonic if the following equations are valid 

                              =   = 0,   =   = 0,        (4.8) 

                              = (1-2 ) (2-3 )  = 0,                                                                              (4.9) 

where w1 is given by 

                               = (1-2 ) (2-3 )  − .         (4.10) 

We shall take some different values of  in Eqs. (4.8) and (4.9) as follows: 

(a) At  = 1, we have  and  are vanished identically and  is not valid, then the surface is    

      not bi-harmonic.      

 

  (b) At  = 0.75, we have 

                  = (  − 8 )  = 0,  = (  − 8 )  = 0,   =1           (4.11)  

Then the surface is not bi-harmonic in this case because . 

  (c) At  = 0.5, we have 

                                       = = 0,  =  = 0,  = 0.        (4.12) 

Then the surface is not bi-harmonic in this case because in generally and  in          

the main surface (3.11). 

  (d) At  = 0.1, we have 

 = (34  − 25 )  = 0,  = (34  − 25 )  = 0, =   = 0.  (4.13) 

Then the surface is not bi-harmonic in this case because =   = 0 but u  in the main 

surface (3.11). 

Corollary 4.3. The surface  is not bi-harmonic in integer or fractional alpha cases. 

The Eqs. (4.11, 4.12) are illustrated in (Fig. 2) and the Eq. (4.13) is illustrated in (Fig. 3). 

(v)  is stable iff the following equation is valid 

                                                               ( )                (4.14) 

Also, putting  = 1, 0.75, 0.5, 0.1 in condition (4.14), one can see that this condition is not 

satisfied, so we have the following 

Corollary 4.4. The surface  is unstable in integer and fractional alpha cases. 
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                  Figure 1: Lw-surface of                                   Figure 2: Bi-harmonic of ,  

            

         Figure 3: Bi-harmonic of ,                                      Figure 4: Lw-surface of  

4.2. Case 2. If we put  = , we denote this surface by  . 

So using Eqs. (3.15-3.17) and (3.19-3.23) , we have the following corollaries: 

(i)  is Lw-surface if the following equation is valid 

                                              2 ( − 1)  + (  + ) − 2  = 0.         (4.15) 

We shall take some different values of α in Eq. (4.15) as follows: 

 (a) At  = 1,  = 2,  = 3,  = 4, we have 

                                                    3e
u 

(u
−1

 + 1) − 8 = 0.         (4.16) 

The Eq. (4.16) has not explicit or numerical solution. 

(b) At  = 0.75, m1 = 2, m2 = 3, m3 = 4, we have 

                                                       3  (  +  − ) − 8 = 0.         (4.17) 

The numerical solution of Eq. (4.17) is u = 2296/4953. 

file:///E:/شغل%20الماجستير/حسابات%20البحث%20التانى/البحث%20الثانى%20وورد/هذا%20الفايل%20بعدل%20فيه/paper2fraction-1.docx%23_bookmark14
file:///E:/شغل%20الماجستير/حسابات%20البحث%20التانى/البحث%20الثانى%20وورد/هذا%20الفايل%20بعدل%20فيه/paper2fraction-1.docx%23_bookmark15
file:///E:/شغل%20الماجستير/حسابات%20البحث%20التانى/البحث%20الثانى%20وورد/هذا%20الفايل%20بعدل%20فيه/paper2fraction-1.docx%23_bookmark16
file:///E:/شغل%20الماجستير/حسابات%20البحث%20التانى/البحث%20الثانى%20وورد/هذا%20الفايل%20بعدل%20فيه/paper2fraction-1.docx%23_bookmark17
file:///E:/شغل%20الماجستير/حسابات%20البحث%20التانى/البحث%20الثانى%20وورد/هذا%20الفايل%20بعدل%20فيه/paper2fraction-1.docx%23_bookmark64


                                            Some Properties of Revolution Surfaces in Euclidean 3-space                                         84 

  

(c)At  = 0.5, m1 = 2, m2 = 3, m3 = 4, we have 

                                                      3  (  + ) − 2   − 8 = 0.         (4.18) 

The numerical solution of Eq. (4.18) is u = 733/847+438/127i. 
(d) At  = 0.1, m1 = 2, m2 = 3, m3 = 4, we have  

                                                      3  (  + ) −   − 8 = 0.         (4.19) 

The numerical solution of Eq. (4.19) is u = 848/995. 

From foregoing results, we have the following: 

Corollary 4.5. The surface  is lw-surface when  = 0.75, 0.1 while it is not lw-surface when 

 = 1, 0.5. 

The Eqs. (4.16 – 4.19) are illustrated in (Fig.   4 ). 

(ii)  is bi-conservative if the following equation is valid 

                                        [3 ][ ] = 0.         (4.20) 

we shall take some different values of α in Eq. (4.20) as follows: 

(a) At  = 1, we have 

                                                      3                 (4.21) 

The solution of Eq. (4.21) is                    

(b) At  = 0.75, we have 

                                           [ ][u+ ]=0.             (4.22) 

The numerical solution of Eq. (4.22) is u =  

(c) At α = 0.5, we have 

                                            [ ][1.5u 0.5 ]=0.              (4.23) 

The numerical solution of Eq. (4.23) is u = 707/2229.  

(d) At α = 0.1, we have 

                                 [ ][ ]=0.             (4.24) 

The numerical solution of Eq. (4.24) is u = 381/3967. 

Thus, we have the following 

Corollary 4.6. The surface  is bi-conservative when  = 1, 0.5, 0.1 while it is not bi- 

conservative when  = 0.75. 

The Eqs. (4.21 – 4.24) are illustrated in (Fig.  5). 

(iii)  is harmonic if the following equation is valid 

                                                              (  + ) = 0.        (4.25) 

We shall take some different values of α in Eq. (4.25) as follows: 

(a) At α = 1, we have 

                                                              u = −1.                  (4.26) 

(b) At α = 0.75, we have  
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                                                                +   = 0.               (4.27) 

The solution of Eq. (4.27) is  

(c) At α = 0.5, we have 

                                                                +    = 0.               (4.28) 

The solution of Eq. (4.28) is . 

(d) At α = 0.1, we have 

                                                              +    = 0.                           (4.29)  

All roots of Eq. (4.29) are complex.

 

Thus, we have the following: 

Corollary 4.7. The surface  is harmonic in the integer alpha case while it is not harmonic in 

fractional alpha cases

The Eqs. (4.26 – 4.29) are illustrated in (Fig. 6) 

(iv)  is bi-harmonic if the following equations are valid 

              =  cos  = 0,   =  sin  = 0,                                                                     (4.30) 

            =  

=0,                    (4.31) 

where  is given by 

 

.     (4.32) 

We shall take some different values of  in Eqs. (4.30) and (4.31) as the following 

(a) At  =1, we have 

                                                                                                          (4.33) 

The solution of Eq. (4.33) is    .   

(b) At  =0.75, we have 

                         (4.34) 

The numerical solution of Eq. (4.34) is   
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(c) At  = 0.5, we have 

                                                                         (4.35) 

The real numerical solution of Eqs. (4.35) is  and the other four roots are complex. 

(d) At  =0.1, we have 

               (4.36) 

The numerical solution of Eqs. (4.36) is u = 950/1791. 

From the previous results, we have the following: 

Corollary 4.8. The surface  is bi-harmonic when  = 1, 0.5, 0.1 and not bi-harmonic when 

= 0.75. 

The Eqs. (4.33, 4.34) are illustrated in (Fig. 7), and the Eqs. (4.35, 4.36) are illustrated in (Fig. 8). 

 
 

               Figure 5: Bi-conservative of                            Figure 6: Harmonic of  

 
 

   Figure 7: Bi-harmonic of            Figure 8: Bi-harmonic of 
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(v)  is stable iff the following equation is valid 

   [  

] 2[ ][0.25  

] =0.                                                                               (4.37)

 

 

We shall take some different values of α in Eq. (4.37) as follows:

(a) At  = 1, we have

            − 2  − 4  + 2  − 2 = 0.                         (4.38) 

The numerical solution of Eq. (4.38) is u = 456/3685. 

(b) At  = 0.75, we have 

(  + 11  + 4  + 3)       (4.39) 
The numerical solution of Eq. (4.39) is u = 2310/841+779/1168 i.  
 
(c) At  = 0.5, we have 

                       .         (4.40) 

The numerical solution of Eq. (4.40) is u = −1031/273. 

(d) At  = 0.1, we have 

.     (4.41) 

The Eq. (4.41) has no exact or numerical solution.  

Thus, we have the following: 

Corollary 4.9. The surface  is stable when  = 1, 0.5 while it is unstable when = 0.75, 0.1. 

The Eqs. (4.38 – 4.41) are illustrated in (Fig. 9). 

4.3. Case 3. If we put  = cos u, we denote this surface by .  

So using Eqs. (3.15-3.17) and (3.19-3.23), we have the following corollaries: 

(i) is Lw-surface if the following equation is valid 

                                 2 (α − 1)  −  (  sin u + cos u) − 2  = 0.          (4.42) 

We shall take some different values of  in Eq. (4.42) as follows: 

(a) At α = 1,  = 2,  = 3,  = 4, we have 

                                                  3u cos u + 3sin u + 8 u = 0.          (4.43) 

The solution of Eq. (4.43) is u = 0. 

(b) At α = 0.75,  = 2,  = 3,  = 4, we have 

                                         3 cos u + 3 sin u +  + 8 = 0.          (4.44)
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The numerical solution of Eq. (4.44) is u =  

(c) At α = 0.5,  = 2,  = 3,  = 4, we have 

                                        3 cos u + 3  sin u + 2  + 8 = 0.                                   (4.45) 

The numerical solution of Eq. (4.45) is u = 20979/212. 

(d) At α = 0.1,  = 2,  = 3,  = 4, we have 

                                         3                         (4.46) 

The numerical solution of Eq. (4.46) is  

Thus, we have the following: 

Corollary 4.10. The surface  is lw-surface when  = 0.5 while it is not lw-surface when 

The Eqs. (4.43 – 4.46) are illustrated in (Fig. 10). 

(ii)  is bi-conservative if the following equation is valid 

cos u +  sin u][

 

(  + )sin u −

 

 + 3(1 − )

 

cos u]

 

= 0.     (4.47)  

We shall take some different values of α in Eq. (4.47) as follows: 

(a) At  = 1, we have 
                             

[3cos u + sin u][

 

cos u − (  + 1)sin u]= 0.           (4.48) 

The numerical solution of Eq. (4.48) is u = −28809/131. 

(b) At  = 0.75, we have 
     
                      [(u+0.75 ) sin u ][3 ]=0.             (4.49) 

The numerical solution of Eq. (4.49) is u = −  

(c) At  = 0.5, we have 

                     [(1.5u+1) cos u ][3 ]=0.              (4.50) 

The numerical solution of Eq. (4.50) is u = −18826/85. 

(d) At  = 0.1, we have 

3 ][ ]=0.             (4.51) 

The numerical solution of Eq. (4.51) is u = 22365/26. 

Thus, we have the following: 

Corollary 4.11. The surface  is bi-conservative when  = 1, 0.5, 0.1while it is not bi-conservative 

when  = 0.75. 

The Eqs. (4.48 – 4.51) are illustrated in (Fig. 11). 

(iii)  is harmonic if the following equation is valid 

                                                                                                sin u + cos u = 0.                                              (4.52) 

We shall take some different values of α in Eq. (4.52) as follows: 
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(a) At  = 1, we have

                                                         cos u +  sin u = 0.                (4.53(

The numerical solution of Eq. (4.53) is u = −28699/126. 

(b) At  = 0.75, we have 

                                                                                                        cos u +  sin u = 0.           (4.54) 

The numerical solution of Eq. (4.54) is u = 18449/81+17/58436i.
(c) At  = 0.5, we have

                                                            cos u +  sin u = 0.           (4.55) 

 The numerical solution of Eq. (4.55) is u = −18449/81. 

(d) At  = 0.1, we have 

                                                            cos u +  sin u = 0.           (4.56) 

The numerical solution of Eq. (4.56) is u = 22365/226. 

Thus, we have the following: 

Corollary 4.12. The surface  is harmonic when  = 1, 0.5, 0.1 while it is not harmonic when  
 = 0.75 

The Eqs. (4.53 – 4.56) are illustrated in (Fig. 12). 

(iv)  is bi-harmonic if the following equations are valid 

                             =  = 0,   = = 0,                                                     (4.57)                                                         

   = [ ] cos u 

                                           + [ + (10-9 )] sin u=0,     (4.58) 

where  is given by 

       (4.59) 

We shall take some different values of  in Eqs. (4.57) and (4.58) as follows:

(a) At  = 1, we have 

 

                                          (4.60) 

The numerical solution of Eqs. (4.60) is u = 39789/170. 

(b) At  = 0.75, we have 
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                             (4.61) 

The numerical solution of Eqs. (4.61) is u = 9929/43+3/31579 i. 

(c) At  = 0.5, we have 

                                               (4.62) 

The numerical solution of Eqs. (4.62) is u =     
(d) At  = 0.1, we have 

              (4.63) 

The numerical solution of Eqs. (4.63) is u = 3611/36. 

From the previous results, we have the following:  
Corollary 4.13. The surface  is bi-harmonic when  = 1, 0.5, 0.1 and not bi-harmonic when 

 = 0.75. 

The Eqs. (4.60, 4.61) are illustrated in (Fig. 13) and the Eqs. (4.62, 4.63) are illustrated in (Fig. 14). 

 

(v)  is stable iff the following equation is valid 
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   2[ ][0.25 ]=0.    (4.64) 

We shall take some different values of  in Eq. (4.64) as follows:

 

(a) At  = 1, we have 

               2  + 2  + 4   −  +  = 0.           (4.65) 

The numerical solution of Eq. (4.65) is u = −7061/31. 

(b) At  = 0.75, we have 

            4  + 8  + 22   + 10  − 12   

             + 8   +12   + 2u  + 5  − 4   = 0.               (4.66) 

The numerical solution of Eq. (4.66) is u = 0. 

(c) At  = 0.5, we have 

             +  2  + ]  +2  + 9  

            +2  − 6  −  = 0,                                                           (4.67) 

The numerical solution of Eq. (4.67) is u = −22094/97. 

(d) At  = 0.1, we have 

[ +  ][ 90  + 25 ]  + 

+50 +365  + 4  + 50  − 486  − 85  = 0.

                 (4.68) 

The numerical solution of Eq. (4.68) is u = 18449/81-10/16929 i.
 

Thus, we have the following: 

 

Corollary 4.14. The surface  is stable when  = 1, 0.5 while it is unstable when  = 0.75, 0.1. 

The Eqs. (4.65 – 4.68) are illustrated in (Fig. 15). 
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                Figure 9: Stability of                Figure 10: Lw-surface of  

 

           Figure 11: Bi-conservative of              Figure 12: Harmonic of  

 

   Figure 13: Bi-harmonic of       Figure 14: Bi-harmonic of    
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                                                        Figure 15: Stability of  

The previous results can be summarized in the following table: 

 

Property Case 1:  Case 2:  Case 3:  

 of    of    of   

Lw-surface 1 0.75, 0.1 0.5 

Not Lw-surface 0.75, 0.5, 0.1 1, 0.5 1, 0.75, 0.1 

Bi-conservative No results 1, 0.5, 0.1 1, 0.5, 0.1 

Not bi-conservative 1, 0.75, 0.5, 0.1 0.75 0.75 

Harmonic No results 1 1, 0.5, 0.1 

Not harmonic 1, 0.75, 0.5, 0.1 0.75, 0.5, 0.1 0.75 

Bi- harmonic No results 1, 0.5, 0.1 1, 0.5, 0.1 

Not bi- harmonic 1, 0.75, 0.5, 0.1 0.75 0.75 

Stable No results 1, 0.5 1, 0.5 

Unstable 1, 0.75, 0.5, 0.1 0.75, 0.1 0.75, 0.1 
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5.  CONCLUSION 

       

       In this study, we have introduced some properties of revolution surfaces using a conformable 

fractional derivative, which is a natural extension of the usual derivative and its definition is the 

simplest and most natural definition of fractional derivative. 

      In section 2, we have defined the revolution surfaces and some properties which are related to our 

work such that, w-surface, lw-surface, bi-conservative, harmonic, bi-harmonic and stability of the 

surfaces. Also, we define the conformable fractional derivative of any function f and have introduced 

the rules of differentiation related to it. 

      In section 3, we have studied some properties of revolution surface  using conformable 

fractional derivative. 

      In section 4 we presented three applications (examples) on the main surface  by replacing  

by special functions and we have plotted the results using Matlab program v.18, and we have 

summarized all applications results in previous table, which makes it easier for the reader to 

understand the applications results easily. The reader should note that the results when alpha equals 

one are the same as the results in Ref. [1]. 

      The table shows the following results: lw-surface is intrinsic property to the surface  at  

only, while for the surface  it is intrinsic property at 0.75, 0.1 Also, for the surface   lw-

surface is intrinsic property at  only, and  the  all  other cases of  the surfaces cannot be have 

intrinsic property. Similarly, with respect to the bi-conservative and bi-harmonic properties, they are 

intrinsic properties for the surfaces  and    at    and they are not intrinsic property 

at another alpha cases and for . Regarding to the harmonic property, it is intrinsic property for the 

surface  at  only, and intrinsic property for  at , 0.5, 0.1 only but it is not intrinsic 

property for  at all alpha cases. Finally, the stability property, it is intrinsic property for the surfaces 

 and    at   only, and it is not intrinsic property for the surface   at all alpha cases.
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