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INTRODUCTION  

 

              Nonlinear acoustic wave equations pose complex mathematical problems in 

various scientific and engineering fields, such as physics, acoustical engineering, sound 

science, and acoustics [1]. They are of paramount importance because linear wave 

equations often fall short in accurately describing high-intensity acoustic waves [2]. One 

of the most widely used and important nonlinear acoustic wave equations is Westervelt 

equation, introduced by P.J. Westervelt in 1963 [3], which describes the propagation of 

finite-amplitude acoustic waves in fluids [4], accounting for the nonlinear effects of the 

acoustic pressure and particle velocity on the wave propagation [5]. Solving these 

equations remains an ongoing research challenge, as they can exhibit intricate phenomena 

due to nonlinear interactions between acoustic waves and the surrounding medium. 
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Numerical simulations of the nonlinear acoustic waves for medical 

applications are performed by using Westervelt equation. In this paper, 

FDTD has been introduced to solve Westervelt equation. Nonlinear 

propagation scheme is applied on different biological media where a 1 kpa 

transducer pressure wave of 1 MHz and interactions with tissues are 

analyzed. Our results show the importance of considering nonlinear 

interactions in understanding the behavior of sound waves in biological 

tissues. 

 

mailto:esraasayed616@gmail.com


 191                                                                                          Esraa S Rabie et al 

 

Effective and accurate solution methods for nonlinear acoustic wave equations are of 

utmost importance in understanding acoustic phenomena and their practical applications. 

       Over the years, Westervelt equation has been extensively studied and widely used in 

various applications due to its ability to capture the nonlinear effects of sound 

propagation accurately [6]. Researchers have explored its behavior, properties, and 

numerical solution methods to gain a deeper understanding of the nonlinear phenomena 

exhibited by acoustic waves. Simulating - nonlinear - acoustic wave propagation in 

biological materials is a critical area of research with applications in medical ultrasound 

imaging and therapeutic ultrasound [7- 9]. To address the complexities of Westervelt 

equation, three principal methods have been employed [10]: finite difference schemes, a 

direct and pragmatic approach [11, 12]; Greens functions, designed for exact solutions 

with linear operators and  well-defined forcing functions; and finite element method 

(FEM) which offers a unique perspective. Although significant progress has been made in 

understanding Westervelt equation and its nonlinear behavior, some gaps in the existing 

literature still remain. For instance, further investigations are needed to explore the 

impact of nonlinear interactions in more realistic and complex scenarios, such as the 

presence of multiple scattering sources and heterogeneous media. Moreover, while the 

Finite Difference Method has proven effective for numerical simulations in terms of The 

Finite - Difference Time - Domain scheme (FDTD).The development of more advanced 

numerical techniques, such as the Finite Element Method and the Spectral Method, merits 

further exploration to enhance the accuracy and efficiency of solving Westervelt 

equation. 

MATERIALS AND METHODS  

 

A nonlinear acoustic field can be simulated by Equation 1. This equation is known 

as Westervelt equation and can be used to simulate wave propagation in tissue, 

                                               (1) 

Where p is the pressure of wave; c0 is the propagation speed; β=1+B/2A is the 

nonlinearity coefficient where B/A is the nonlinearity parameter of the medium [13]; and 

δ is the sound diffusivity, which depends on viscosity and thermal conductivity of the 

medium. The first and second terms of Equation (1) represent linear propagation of 

waves in a medium without any loss. The third term is related to the losses due to the 

thermal conductivity and viscosity of the fluid. The last term of the equation is related to 

the nonlinear factors influencing the simulation of wave propagation which may cause 

thermal and mechanical changes within the tissue. 

The system of equation 1 is solved using (FDTD) algorithm. The FDTD is a set of 

discrete points in time that will sample our functions. This is done by fixing a grid 

spacing of Δt in time and Δx in space. The points that lie on the mesh are then defined as, 

                                                  (2) 

                                                   (3) 
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Where Δt and Δx is the constant length of the time and space steps. The mesh 

function will be computed from algebraic equations derived from the equations (1) using 

the central-difference method as follows [14, 15],    

 =   (p i,j -  p i,j-1)                                                                        (4) 

 =   (p i,j+1 - 2 p i,j + p i,j-1 )                                                       (5) 

 =   (3 p i,j+1 - 10 p i,j + 12 p i,j-1 – 6 p i,j-2 + p i,j-3 )                  (6) 

 =   (- p i+2,j + 16 p i+1,j – 30 p i,j + 16 p i-1,j – p i-2,j)              (7) 

The term   is calculated by making use of the chain rule and product rule: 

 = 2 (( ) 
2 

  + p  )                                                     (8) 

Substitution in eq.(1) we get 

P i,j+1 = [  (-p i+2,j + 16 p i+1,j – 30 p i,j + 16 pi-1,j - pi-2,j) + p i,j ( ) 

+ p i,j-1(  – p i,j-2 (  + p i,j-3( ) +    (p i,j -  p i,j-1)
2
 

+   (p i,j+1 - 2 p i,j + p i,j-1)] / (                           (9) 

Where in one dimensions ∇2
p = . Note that c is actually dependent on (i) as it 

varies depending on the properties of the medium at each position. For simplicity we 

assume reflecting boundary conditions (i.e. p i,j = 0 for all (i, j) which lie outside the grid) 

[16]. The Boundary condition can be described as 

F (t) = p0                                                (10) 

            P (0, t) = f (t),             P (L, t) = 0 

            P (x, 0) = 0,                  t=0 =0,        

f (t) is the source function at x = 0. P has essential boundary conditions at x = 0 and 

x= L [17]. 

 

 

 

Table (1).  Complication of acoustic tissue properties [18].  

Tissue Name        

      (units) 

C    

m/s 
    
dB/m/MHz 

 
 

Kg/m
3
 

   Z 

MRayls 

     B/A 

         

Blood 

Fat 

Liver  

Muscle 

1584 

1430 

1578 

1580 

  14 

  60 

  45 

  57 

 1060 

928 

1050 

1041 

1.68 

1.33 

1.66 

1.64 

    6 

    10.3 

    6.75 

    7.43 
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RESULTS AND DISCUSSION  

 

         The proposed method was implemented in FORTRAN and used  

cm,  s and the step of grid, which λ/5, where λ is the wavelength of 

acoustic for the given frequency and medium. The source function is shown in fig. (1). 

the different biological materials used in this research are shown in Table (1). In the 

beginning, the computational start with the linear equation, i.e.  β=0 and δ=0 in eq. (1). 

Fig. (2) shows that  pressure amplitude  at distance  1.2 cm  in blood medium. Secondly, 

we study the effect of the nonlinear coefficient while neglecting the coefficient of 

absorption. Fig. 3 shows the effect of the β value, In addition to the initial pressure value, 

on the shape of the spectrum. It is clear from this figure that as the β value and the 

pressure value increase, the value and number of harmonic frequencies increases. Fig. (4) 

shows the change in pressure with frequency for the biological materials mentioned in 

Table (1). Due to the closeness of the β value between the materials, we find that the 

change is slight in harmonics frequencies and the fundamental frequency is constant for 

all biological materials. Thirdly, we study the effect of coefficient of absorption on the 

shape of the wave while neglecting beta. Fig. (5) shows the waveform of the fat substance 

at different depths, as well as Figure No. 6 shows the change in the shape of the spectrum 

for biological materials with a variable value of the absorption coefficient at depth 1.2 

cm. The observed decrease in wave amplitude at specific distances suggests the influence 

of factors such as absorption. This understanding aids in optimizing ultrasound imaging 

and therapeutic procedures at varying depths within tissues. Fig. (6) shows the change in 

the shape of the spectrum for biological materials with a variable value of the absorption 

coefficient and nonlinear coefficient at depth 0.9 cm. By manipulating the nonlinearity 

coefficient (β) and adjusting the source pressure, distinct frequency-domain patterns were 

observed. These variations emphasized the sensitivity of the acoustic signals to changes 

in nonlinear parameters, which is crucial in applications like medical ultrasound where 

accurate signal interpretation is essential. 

   

                                                           

                                                        a                                                                      b 

  

 

 

 

 

 

Figure 1 (a) pressure field as function of the time from the source and (b) Frequency 

domain. 
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Figure 2 (a) pressure field as function of the time from the source at distance x = 1.2 cm 

and (b) Frequency domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3   Frequency-domain results at different coefficient of nonlinearity and source 

pressure. 
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Figure 4 Frequency-domain results at different tissues at  with the effect of 

nonlinearity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 time domain signal for fat at different distance with the effect of absorption 

and . 
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Figure 6 Frequency-domain results at different tissues at  with the effect of 

absorption.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Frequency-domain results at different tissues with the effect of nonlinearity and 

absorption at distance 0.9 cm. 
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CONCLUSION 

 

In this paper we presented a comprehensive investigation into the nonlinear 

propagation effects in biological materials using Westervelt equation was conducted. 

Finite-Difference Time-Domain (FDTD) scheme was successfully employed to solve 

Westervelt equation and analyze the interactions between acoustic waves and different 

biological tissues. Through its application, accurate numerical solutions were obtained for 

Westervelt equation. The successful application of the Finite Difference Method to 

Westervelt equation enhances our understanding of complex acoustic interactions and has 

the potential to improve medical the frequency response characteristic pattern provides 

deeper insights into how waves interact with biological tissues at different frequency 

ranges, which is essential for designing effective ultrasound imaging protocols and 

ultrasound applications. Our results show that the importance of considering nonlinear 

interactions in understanding the behavior of sound waves in biological tissues. 

Comparisons of pressure distribution and frequency response among different tissues 

(blood, fat, liver, muscle) revealed tissue-specific behaviors. These findings have 

implications for diagnostic accuracy and therapeutic efficacy as different tissues exhibit 

unique responses to acoustic waves. 
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