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1. INTRODUCTION

Throughout this article, R denotes an associative ring with identity, and 73(S) =
{a € R|sa = 0, for all s € S} is the right annihilator of a nonempty subset S in R.
In [7], Kaplansky introduced Baer rings as rings in which the right annihilator of every
nonempty subset of R is generated by an idempotent. Clark defined quasi-Baer rings in
[3] as rings in which the right annihilator of every right ideal of R is generated by an
idempotent. Baer rings are clearly quasi-Baer rings. In a reduced ring R, R is Baer if and
only if R is quasi-Baer. The definitions of Baer and quasi-Baer rings are left-right
symmetric by [7, Theorem 3] and [3, Lemma 1].

According to Moussavi et al. [14], a ring R is called generalized right quasi-Baer if
for any right ideal I of R, the right annihilator of I™ is generated by an idempotent for
some positive integer n, depending on I. The class of generalized right quasi-Baer rings
includes the right quasi-Baer rings and is closed under direct product and also under some
kinds of upper triangular matrix rings. Example (4.4) in [14] is an example of a
generalized right quasi-Baer ring which is not generalized left quasi-Baer, and hence the
definition of generalized quasi-Baer ring is not left-right symmetric.

In [15] K. Paykan and A. Moussavi defined a generalized right Baer rings as rings in
which the right annihilator of S™ is generated by an idempotent for some positive integer
n, where S is a non-empty subset of R and S™ is a set that contains elements a,a, ... a,
such that a; € S for 1 <i < n. A ring is called generalized Baer if it is both generalized
right and left Baer ring. Baer rings are clearly generalized right (left) Baer. Also, the class
of generalized right (left) Baer rings is obviously included in the classes of generalized
right (left) quasi Baer rings. Example (2.2) in [15] shows that there are various classes of
generalized quasi-Baer ring which are not generalized Baer. Also, there are rich classes of
generalized right Baer rings which are not Baer (see [15, Example 2.3]).

In [5] we examined the behavior of a skew generalized power series ring over a semi-
Baer (semi-quasi Baer) rings. In this paper, we study the relation between the generalized
Baer (generalized quasi Baer) rings and its skew generalized power series ring extensions

and determine the conditions under which a ring of skew generalized power series
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R[[S, w]] is generalized Baer (generalized quasi Baer) whenever R is generalized Baer

(generalized quasi Baer) and vice versa.

2. Skew Generalized Power Series Rings

The construction of generalized power series rings was considered by Higman in [6].
Paulo Ribenboim studied extensively in a series of papers (see [17]-[21]) the rings of
generalized power series. In [13], Mazurek and Ziembowski generalized this construction

by introducing the concept of the skew generalized power series rings.

An ordered monoid is a pair (S, <) consisting of a monoid S and a compatible order
relation < such that if u < v, then ut < vt and tu < tv foreacht € S. (S, <) is called
a strictly ordered monoid if whenever u,v € S suchthat u < v (i.e., u < vandu # v),
then ut < vt and tu <tv for all t € S. Recall that an ordered set (S, <) is called
artinian if every strictly decreasing sequence of elements of S is finite, and (S, <) is
called narrow if every subset of pairwise order-incomparable elements of S is finite.
Thus, (S, <) is artinian and narrow if and only if every nonempty subset of S has at

least one but only a finite number of minimal elements.

Let R be a ring, (S,<) a strictly ordered monoid, w:S — End(R) a monoid
homomorphism, where w; denotes the image of s under w, foreachs € S, that is
ws = w(s), and A the set of all maps f: S = R suchthat supp (f) ={s €S : f(s) #
0} is an artinian and narrow subset of S. Under pointwise addition A is an abelian
subgroup of the additive group of all mappings f : S - R.Foreverys € Sand f,g € A
the set X (f,g) ={(w,v) ES X S:uv =5, f(u) # 0, g(v) # 0} is finite by [18, 4.1].
Define the multiplication for each f,g € A by:

f9(s) = Xwvyex,(r.9) f Wwy (g(v)). (By convention, a sum over the empty set is 0).
With pointwise addition and multiplication as defined above, A becomes a ring called the
ring of skew generalized power series whose elements have coefficients in R and
exponents in S. For each r € R and s €S one can associate the maps c¢,,e5 € A
defined by:
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(T if x =1 _( 1z ifx=s
cr(x) { 0 otherwise ' es(x) { 0 otherwise

It is clear that r — ¢, is a ring embedding of R into A and s — e is a monoid
embedding of S into the multiplicative monoid of A and esc, = ¢, (- es. Moreover,
the identity element of A isamap e: S —» R defined by e(15) = (1) and e(s) =0
for each s € S\{1,}.

Let R be a ring and o an endomorphism of R. The construction of the skew
generalized power series rings generalizes many classical ring constructions such as the
skew polynomial rings R[x,c] if S =N U {0} and < is the trivial order, skew power
series rings R[[x,a]] if S =N U {0} and < is the natural linear order, skew Laurent
polynomial rings R[x,x 1;0] if S=Z and < is the trivial order where ¢ is an
automorphism of R, skew Laurent power series rings R[[x,x~1;¢]] if S = Z and < is the
natural linear order where ¢ is an automorphism of R. Moreover, the ring of polynomials
R[x], the ring of power series R[[x]], the ring of Laurent polynomials R[x,x '], and the
ring of Laurent power series R[[x, x1]] are special cases of the skew generalized power

series rings, if we consider o to be the identity map of R.

3. Main Results

An ordered monoid (S, <) is called positively ordered if 1 is the minimal element
of S.

Definition 3.1 ([1]). An endomorphism ¢ of a ring R is called compatible if for all
a,b€R, ab=0 ifandonlyif aa(b) = 0.

Definition 3.2 ([9]). An endomorphism o of a ring R is called rigid if for every a € R,
ad(a) =0 ifandonly if a = 0.

Let R be a ring, (S,<) a strictly ordered monoid, and w:S — End(R) a monoid
homomorphism. As in [12], a ring R is S-compatible (S-rigid) if w, is compatible (rigid)

forevery s € S.
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Definition 3.3 ([11]). An ordered monoid (S, <) is said to be quasitotally ordered (and
<is called a quasitotal order on S) if < can be refined to an order < with respect to

which S is a strictly totally ordered monoid.

Recall that a ring R is said to be (S, w)-Armendariz if whenever fg =0 for
f,g € R[[S, w]], then f(s).ws(g(t)) = 0 forall s,t € S (see [12, Definition 2.1]).

Proposition 3.4 ([12, Proposition 4.10]). Let R be a ring, (S,<) a strictly ordered
monoid, and w : S = End(R) a monoid homomorphism. Assume that R is (S, w)-

Armendariz. If f is an idempotent of R[[S, w]], then f (1) is an idempotent of R and
f=cf@.

Proposition 3.5. Let R be an (S, w)-Armendariz ring, (S, <) a quasitotally ordered
monoid, and w:S — End(R) a monoid homomorphism. Set A = R[[S, w]] the ring of

skew generalized power series.
(1) If A is a generalized right Baer ring, then R is a generalized right Baer ring.

(2) If R is an S-compatible ring and A is a generalized right quasi-Baer ring, then R
is a generalized right quasi-Baer ring.

Proof. (1) Let X be a non-empty subset of R. Then B = {c,:x € X} is a non-empty
subset of A. Since A is a generalized right Baer, there exists f € A such that r,(B") =
fA with f2 = f. Proposition 3.4 implies that f(1) is an idempotent element of R. We
want to prove that rx(X™) = f(1)R.

Since f €7r,(B"), we have (cy,Cy,..Cy,)f =0 forall ¢, cy,..c, €B" and

X1, X3, e, Xy € X. ThUS
0 = (Cx; Cxp - Cx) (1) = €y, (Dw1(€x, (1)) .. w1(cx, (D)1 (f(D) =
X1 % o Xy f(1) fOrall x; x, ... X, € X™
Hence f(1) € rx(X™), which implies that f(1)R S rz(X™).

On the other hand, if a € rg(X™), then (x;x;.. x,)a=0 for all x; €X with
1<i<n Thus(cy,Cyx, - Cx,) €a (1) = cx, (D1 (cx, (1)) ... w1(cy, (1))w1(cq(1)) =
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(X1 X3 ... X,) @ =0. Which implies that (cy cy, .. ¢x,) =0 for all ¢, €B.
Therefore, c, € r4(B™) = fA and ¢, = fg forsome g € A. Now, a=c,(1)=
(fg)(1) = f(Dw,(g(1)) € fF(1)R. That is 1x(X™) € f(1R, which follows that
rr(X™) = f(1)R. Hence R is a generalized right Baer ring.

(2) Let I be aright ideal of R. Then I[[S,w]] = {f € A| f(s) €1 forany s € S} is
a right ideal of A. Since A is a generalized right quasi-Baer, there exists f € A such
that 7,(I"[[S,w]]) = fA with f? = f. Proposition 3.4 implies that f(1) is an
idempotent element of R. We want to prove that 1x(I") = f(1)R. Since f €

r2(I"[[S, w]]), we have (9195 - gn) f =0 forall g4,9s, ... ,9n € I[[S, w]].

Since ¢;, € I[[S,w]] forall iy €1 with 1<k <n,wehave (c,cy,..c,) f=0.

Consequently,  ((c, ¢, - ¢i) (1) = ¢, (Dwq(ci, (1)) ... wq (cin(l)) w(f(1) =0
which implies that i; i, ... i, f(1) =0 for all iy,i,,..,i, €. Hence f(1) € rx(I"),
which implies that f(1)R < rz(I™).

On the other hand, if a € rz(I"), then (iyi,...i)a =0 forall i,i,,..,i, € 1. Since
ge(sp) el for all gy ell[Sw]] and s, €S with 1<k<n, we have

91(51)92(s2) ... gn(sy) a = 0.Since R is S-compatible, we have

91(51)0)51(92 (52))(‘)5152 (93 (53)) e Wso s, 51 (gn(sn))wslsz...sn(ca(l)) = 0.

Which implies that  (g195 ... gnca)(s) =

gl(sl)wsl (92(52))(‘)5152 (93 (53)) -"wslsz...sn_l(gn(sn))wslsz...Sn(ca(l)) =0

(51,52, » S 1)EXs(g 1,920+ 1GnsCa)

Thus ¢, € TA(I”[[S, w]]) = fA and ¢, = fg for some g € A.

Now, a = ¢c,(1) = (fg)(1) = f(Dw,(g(1)) € f(1)R. Thatis rz(I™) < f(1)R, which
follows that rz (I™) = f(1)R. Hence R is a generalized right quasi-Baer ring.
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Proposition 3.6. Let R be an S-compatible (S,w)-Armendariz ring, (S,<) a
quasitotally ordered monoid, and w:S — End(R) a monoid homomorphism. Set

A = R|[[S, w]] the ring of skew generalized power series.
(1) If R is a generalized right Baer ring, then A is a generalized right Baer ring.

(2) If R is a generalized right quasi-Baer ring, then A is a generalized right quasi-

Baer ring.

Proof. (1) Let B be a non-empty subset of A. Then U = {f(s) : f € B, s € S} is anon-
empty subset of R.Since R is a generalized right Baer, there exists b € R such that
rr(U™) = bR with b? = b which implies that ¢,? = ¢,. We want to prove that
14(B™) = ¢, A. Since b € rg(UM), it follows that  f;(s1)f2(s2) ... fn(sy) b = 0 for all
fis;)) €U with 1<i<n. Thus f;(s1)f5(s2) ... fn(sp) c,(1) = 0. Since R is S-
compatible, then f; (s1)ws, (f2(52)) ... ws, , (fn(sn))ws, (cp(1)) = 0.

Thus (fifs . facp)(s) =

fi(sDws, (f2(52)) Ws,5, (f3(53)) o sy, sy (fr(50)) W5, .5, (€6 (1) = 0

(51,52, S DEXs(f1, 12, fn,Ch)

It follows that ¢, € r,(B™) which implies that c,A < r,(B™).

Now, let f € ry(B™). Then fif;..fof =0 forall fif,.. f, € B™ Since R is an
(S, w)-Armendariz ring, we get fi(uq)wy, (f2(U2)) ... Wy, , (fp(up))wy,, (f(¥)) =0
for all Uq, Uy, ..., Uy, V €S. Moreover, since R is S-compatible, we get
fituy) fL(uy) ... fu(uy) f(v) =0. Thus f(v) € rx(U™) = bR forall v € S. Therefore,
for all v € S there exists r € R such that f(v) = br = (¢ycre,)(v). Thus f = cpcre,,
which implies that f € c,A. Thatis 14,(B™) S ¢, A, which follows that r,(B™) = ¢, A.

Hence A is a generalized right Baer ring.

(2) Let J bearightideal of A. Foreverys € S,set J ={f(s): f €], s€ S}, and
J* =Uges Js. Let I be the right ideal generated by J*. Since R is a generalized right
quasi-Baer ring, there exists b € R such that 7 (I™) = bR with b? = b. Therefore, c, is
an idempotent element of A. We want to prove that r,(J™) = ¢, A.
Since b € rr(I™), it follows that i;iyis ... i, b =0 forall i; €I with 1 <j <n. Since

gi(s)) €1 forall g; €] and s; € S,we have g;(s1)g2(s2) ... gn(sp) b = 0.
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Thus g1(s1)92(s2) ... gn(sy) ¢, (1) = 0. Since R is S-compatibe,
91(51)(051(92(52))0)5152 (93(53)) e Wgs, sn_l(gn(sn))wslsz...sn(cb(l)) = 0. Thus
(9192 - n cp)(s) =

91(51)ws1(92(52))ws1s2 (gS (53)) ---wslsz...sn_l(gn(sn))wslsz...sn(cb(1)) =0.

(51,52, S, 1)€X5(91,92,-+9n,Ch)

It follows that ¢, € r,(J™) which implies that ¢, A < r,(J™).

Now, let g € r,(J™). Then g,9,.. gng =0 forall g, 95 ..,9, €J. Since R is an
(S, w)-Armendariz ring, we get g, (u;)wy, (g2(Uz)) ... Wy, ,(Gn(un))wy, (g(v)) =0
for all Uy, Uy, ..., Uy, V €S. Moreover, since R is S-compatible, we get

g1(uy) g, (uz) ... gn(uy) g(w) = 0.

Thus g(v) € rg(I™) = bR for all v € S. Therefore, for all v € S there exists r € R
such that g(v) = br = (cpcre,)(v). Thus g = c,cre,, Which implies that g € ¢, A.
That is 7,(j™) € c,A, which follows that r,(J*) = ¢, A. Hence A is a generalized right

quasi-Baer ring.
By combining Proposition 3.5 and Proposition 3.6, we obtain the following Theorem.

Theorem 3.7. Let R be an S-compatible (S, w)-Armendariz ring, (S,<) a quasitotally
ordered monoid and w:S — End(R) a monoid homomorphism. Set A = R|[[S, w]] the
ring of skew generalized power series. Then A is a generalized right Baer (quasi-Baer)

ring if and only if R is a generalized right Baer (quasi-Baer) ring.

Liu Zhongkui called a ring R an S-Armendariz ring if whenever f, g € R[[S]] (the
ring of generalized power series) satisfy fg = 0, then f(u)g(v) = 0 for each u,v €
S (see [10]).

Corollary 3.8. Let R be an S-Armendariz ring and (S,<) a quasitotally ordered
monoid. Set A = R[[S]] the ring of generalized power series. Then A is a generalized
right Baer (quasi-Baer) ring if and only if R is a generalized right Baer (quasi-Baer)

ring.
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From [8], a ring R is called a power-serieswise Armendariz ring if whenever power
series f(x) = X2oa;x' and g(x) = X2, bjx/ satisfy f(x)g(x) =0 we have

a;b; = 0 forevery iand j.

Corollary 3.9. Let R be a power-serieswise Armendariz ring. Then R[[x]] is a

generalized right quasi-Baer ring if and only if R is a generalized right quasi-Baer ring.

Corollary 3.10 ([15, Theorem 3.20 and Theorem 3.21]). Let R be a power-serieswise
Armendariz ring. Then R[[x]] is a generalized right Baer ring if and only if R is a

generalized right Baer ring.

Rege and Chhawchharia in [16] introduced the notion of an Armendariz ring. They
defined a ring R to be an Armendariz ring if whenever polynomials f(x) = Y, a;x",
g(x) = X7 bjx’ € R[x] satisfy f(x)g(x) = 0, then a;b; = 0 for every iand j. (The
converse is always true.) The name ‘‘Armendariz ring’’ was chosen because Armendariz
[2, Lemma 1] had noted that a reduced ring satisfies this condition. Note that Power-

serieswise Armendariz rings are Armendariz, however the converse need not be true by

example (2.1) in [8].

Corollary 3.11 ([4, Proposition 1 and Proposition 2]). Let R be an Armendariz ring.
Then R[x] is a generalized right quasi-Baer ring if and only if R is a generalized right

quasi-Baer ring.

Corollary 3.12 ([15, Theorem 3.14 and Theorem 3.15]). Let R be an Armendariz ring.
Then R[x] is a generalized right Baer ring if and only if R is a generalized right Baer

ring.
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